Journal of the Korean Physical Society

, Volume 64, Issue 4, pp 499–503 | Cite as

Consistent theory for causal non-locality beyond the Born’s rule

Article
  • 50 Downloads

Abstract

According to the theory of relativity and causality, a special type of correlation beyond quantum mechanics is possible in principle under the name of a non-local box. The concept has been introduced from the principle of non-locality, which satisfies relativistic causality. In this paper, we show that a correlation leading to the non-local box can be derived consistently if we release one of major axioms in quantum mechanics, Born’s rule. This allows us to obtain a theory that in one end of the spectrum agrees with the classical probability and in the other end agrees with the theory of non-local causality. At the same time, we argue that the correlation lies in a space with special mathematical constraints such that a physical realization of the correlation through a probability measure is not possible in one direction of its limit, but is possible in the other limit.

Keywords

Born rule Nonlocal box Correlation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Enstein, B. Podolsky and N. Rosen, Phys. Rev. 47, 777 (1935).ADSCrossRefGoogle Scholar
  2. [2]
    J. S. Bell, Physics 1, 195 (1964).Google Scholar
  3. [3]
    Y. Aharonov, unpublished lecture note; see also, Y. Aharonov and D. Rohrlich, Quantum Paradoxes (Wiley-VCH, Verlag GmbH & Co. KGaA 2005).Google Scholar
  4. [4]
    L. Hardy, arXiv:quant-ph/0101012.Google Scholar
  5. [5]
    M. Born, Z. fur Phys. 37, 12 (1926); English translation, On the quantum mechanics of collisions in Quantum theory and measurement, edited by J. A. Wheeler and W. H. Zurek, (Princeton University Press, 1983).CrossRefGoogle Scholar
  6. [6]
    A. M. Gleason, J. of Math. and Mech. 6, 885 (1957).MATHMathSciNetGoogle Scholar
  7. [7]
    A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic Publishers, London, 1993).MATHGoogle Scholar
  8. [8]
    D. Deutsch, Proc. Roy. Soc. Lond. A 455, 3129 (1999).ADSCrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    H. Barnum, C. M. Caves, J. Finkelstein, C. A. Fuchs and R. Schack, Proc. Roy. Soc. Lond. A 456, 1175 (2000); D. Wallace, Stud. Hist. Phil. Mod. Phys. 34, 415 (2003); See also N. P. Landsman, in Compendium of Quantum Physics, edited by F. Weinert, K. Hentschel, D. Greenberger and B. Falkenburg (Springer, 2008).ADSCrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    W. H. Zurek, Phys. Rev. A 71, 052105 (2005).ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    W. H. Zurek, Phys. Rev. Lett. 106, 250402 (2011).ADSCrossRefGoogle Scholar
  12. [12]
    U. Sinha, C. Couteau, Z. Medendorp, I. Sollner, R. Laflamme, R. Sorkin and G. Weihs, Proceedings of Foundations of Probability and Physics 5, Vaxjo, Sweden (2008).Google Scholar
  13. [13]
    U. Sinha, C. Couteau, T. Jennewein, R. Laflamme and G. Weihs, Science 329, 418 (2010).ADSCrossRefMATHMathSciNetGoogle Scholar
  14. [14]
    Y. D. Han and T. Choi, arXiv:1307.2026 (2013).Google Scholar
  15. [15]
    S. Popescu and D. Rohrlich, Found. Phys. 24, 379 (1994).ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    J. F. Clauser, M.A. Horne, A. Shimony and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).ADSCrossRefGoogle Scholar
  17. [17]
    B. S. Cirel’son, Lett. Math. Phys. 4, 93 (1980).ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu and D. Roberts, Phys. Rev. A 71, 022101 (2005).ADSCrossRefGoogle Scholar
  19. [19]
    W. van Dam, Ph.D. Thesis, University of Oxford (2000), quant-ph/0501159.Google Scholar
  20. [20]
    G. Brassard, H. Buhrman, N. Linden, A. Methot, A. Tapp and F. Unger, Phys. Rev. Lett. 96, 250401 (2006).ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Korean Physical Society 2014

Authors and Affiliations

  1. 1.Department of PhysicsSogang UniversitySeoulKorea

Personalised recommendations