Journal of the Korean Physical Society

, Volume 64, Issue 2, pp 305–312 | Cite as

Quantification of breast composition by using a dual-energy technique with a photon-counting detector: Monte Carlo simulation studies

Article
  • 97 Downloads

Abstract

Photon-counting detectors with energy-discrimination capabilities are able to reduce radiation dose and suppress noise compared with conventional detectors for X-ray imaging. These detectors are suitable for spectral X-ray imaging because they can measure the energy of each photon and provide spectral information. One potential application of photon-counting detectors with energy-discrimination capabilities is the quantification of breast composition by using dual-energy techniques. In this study, we implemented quantitative breast imaging with dual-energy techniques by using Monte Carlo simulations. An X-ray imaging system was simulated with a photon-counting detector based on cadmium zinc telluride and a micro-focus X-ray tube. In order to decompose three materials with two spectral measurements, we applied an additional constraint that the sum of the volumes of each material be equivalent to the volume of the mixture. Inverse fitting functions with the least-squares estimation were used to obtain fitting coefficients and calculate volume fractions for each material. The results showed that the degree of decomposition for the composition included in the mixtures varied with the type of composition and the inverse fitting function. High-order fitting functions increased the quantitative accuracy, but the uncertainty of the decomposed images was increased for high-order fitting functions. This study demonstrates that it is possible to quantify breast composition by using dual-energy techniques and photon-counting detectors without an additional exposure and that the decomposed images should be evaluated by considering both their uncertainties and quantitative accuracies.

Keywords

Photon-counting detector Dual-energy imaging Material decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Takahashi and S. Watanabe, IEEE Trans. Nucl. Sci. 48, 950 (2001).ADSCrossRefGoogle Scholar
  2. [2]
    K. Spartiotis, A. Leppanen, T. Pantsar, J. Pyyhtia, P. Laukka, K. Muukkonen, O. Mannisto, J. Kinnari and T. Schulman, Nucl. Instrum. Methods A 550, 267 (2005).ADSCrossRefGoogle Scholar
  3. [3]
    M. Locker, P. Fischer, S. Krimmel, H. Kruger, M. Lindner, K. Nakazawa, T. Takahashi and N. Wermes, IEEE Trans. Nucl. Sci. 51, 1717 (2004).ADSCrossRefGoogle Scholar
  4. [4]
    P. M. Shikhaliev, Phys. Med. Biol. 53, 1475 (2008).CrossRefGoogle Scholar
  5. [5]
    X. Wang, D. Meier, B. M. Sundal, P. Oya, G. E. Maehlum, D. J. Wagenaar, B. E. Patt, B. M. W. Tsui and E. Frey, IEEE Nuclear Science Symposium Conference Record (Orlando, 2009), 3453.Google Scholar
  6. [6]
    T. G. Schmidt, Med. Phys. 36, 3018 (2009).CrossRefGoogle Scholar
  7. [7]
    S. W. Lee, Y. N. Choi, H. M. Cho, Y. J. Lee, H. J. Ryu and H. J. Kim, Phys. Med. Biol. 57, 4931 (2012).CrossRefGoogle Scholar
  8. [8]
    N. F. Boyd et al, N. Engl. J. Med. 356, 227 (2007).CrossRefGoogle Scholar
  9. [9]
    J. A. Shepherd, K. M. Kerlikowske, R. Smith-Bindman, H. K. Genant and S. R. Cummings, Radiology 223, 554 (2002).CrossRefGoogle Scholar
  10. [10]
    C. Bryne, J. Natl. Cancer Inst. 89, (1997).Google Scholar
  11. [11]
    A. D. Laidevant, S. Malkov, C. I. Flowers, K. Kerlikowske and J. A. Shepherd, Med. Phys. 37, 164 (2010).CrossRefGoogle Scholar
  12. [12]
    L. M. Warren, A. Mackenzie, D. R. Dance and K. C. Young, Phys. Med. Biol. 58, N103 (2013).CrossRefGoogle Scholar
  13. [13]
    S. C. Kappadath and C. C. Shaw, Phys. Med. Biol. 53, 5421 (2008).CrossRefGoogle Scholar
  14. [14]
    S. C. Kappadath and C. C. Shaw, Med. Phys. 32, 3395 (2005).CrossRefGoogle Scholar
  15. [15]
    A. N. Primak, J. C. R. Giraldo, C. D. Eusemann, B. Schmidt, B. Kantor, J. G. Fletcher and C. H. McCollough, AJR Am. J. Roentgenol. 195, 1164 (2010).CrossRefGoogle Scholar
  16. [16]
    M. Qu, J. C. R. Giraldo, S. Leng, J. C. Williams, T. J. Vrtiska, J. C. Lieske and C. H. McCollough, AJR 196, 1279 (2011).CrossRefGoogle Scholar
  17. [17]
    Y. N. Choi, H. M. Cho, S. W. Lee, H. J. Ryu, Y. J. Lee and H. J. Kim, J. Korean Phys. Soc. 59, 161 (2011).CrossRefGoogle Scholar
  18. [18]
    G. Poludniowski, G. Landry, F. DeBlois, P. M. Evans and F. Verhaegen, Phys. Med. Biol. 54, N433 (2009).ADSCrossRefGoogle Scholar
  19. [19]
    G. F. Knoll, Radiation Detection and Measurement (Wiley, New York, 2010).Google Scholar
  20. [20]
    X. Wang, D. Meier, S. Mikkelsen, G. E. Maehlum, D. J. Wagenaar, B. M. W. Tsui, B. E. Patt and E. C. Frey, Phys. Med. Biol. 56, 2791 (2011).CrossRefGoogle Scholar
  21. [21]
    X. Wang, D. Meier, K. Taguchi, D. J. Wagenaar, B. E. Patt and E. C. Frey, Med. Phys. 38, 1534 (2011).CrossRefGoogle Scholar
  22. [22]
    D. Lazaro et al., Phys. Med. Biol. 49, 271 (2004).CrossRefGoogle Scholar
  23. [23]
    K. Taguchi, E. C. Frey, X. Wang, J. S. Iwanczyk and W. C. Barber, Med. Phys. 37, 3957 (2010).CrossRefGoogle Scholar
  24. [24]
    S. Jan et al., Phys. Med. Biol. 56, 881 (2011).CrossRefGoogle Scholar
  25. [25]
    L. Grevillot, D. Bertrand, F. Dessy, N. Freud, and D. Sarrut, Phys. Med. Biol. 56, 5203 (2011).CrossRefGoogle Scholar
  26. [26]
    J. M. Boone, A. L. C. Kwan, J. A. Seibert, N. Shah, K. K. Lindfors and T. R. Nelson, Med. Phys. 32, 3767 (2005).CrossRefGoogle Scholar
  27. [27]
    A. Malusek, M Karlsson, M. Magnusson and G. A. Carlsson, Phys. Med. Biol. 58, 771 (2013).CrossRefGoogle Scholar
  28. [28]
    M. R. Lemacks, S. C. Kappadath, C. C. Shaw, X. Liu and G. J. Whitman, Med. Phys. 29, 1739 (2002).CrossRefGoogle Scholar
  29. [29]
    H. N. Cardinal and A. Fenster, Med. Phys. 17, 327 (1990).CrossRefGoogle Scholar
  30. [30]
    A. A. Giordano and F. M. Hdu, Least Square Estimation with Applications to Digital Signal Processing (Wiley, New York, 1985).Google Scholar
  31. [31]
    L. Justin and S. Molloi, Med. Phys. 35, 5411 (2008).CrossRefGoogle Scholar
  32. [32]
    J. M. Boone, Radiology 213, 23 (1999).CrossRefGoogle Scholar
  33. [33]
    ICRU Report 44, Tissue substitutes in radiation dosimetry and measurement (1989).Google Scholar
  34. [34]
    S. C. Kappadath and C. C. Shaw, Med. Phys. 30, 1110 (2003).CrossRefGoogle Scholar
  35. [35]
    E. Samei and R. S. Saunders Jr., Phys. Med. Biol. 56, 6359 (2011).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2014

Authors and Affiliations

  1. 1.Department of Radiological Science and Research Institute of Health ScienceYonsei UniversityWonjuKorea

Personalised recommendations