Advertisement

Journal of the Korean Physical Society

, Volume 64, Issue 2, pp 186–191 | Cite as

Fractional damped oscillators and fractional forced oscillators

  • Won Sang Chung
  • Min Jung
Article

Abstract

In this paper, we use fractional calculus to discuss fractional mechanics, where the time derivative is replaced with the fractional derivative of order ν. We deal with the motion of a body in a resisting medium where the retarding force is assumed to be proportional to the fractional velocity that is obtained by applying the fractional derivative to the position. The fractional oscillator problem, the fractional oscillator problem with resistance and the fractional forced oscillator problem are also studied

Keywords

Fractional calculus Fractional mechanics Fractional oscillator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Oldham and J. Spanier, The fractional Calculus (Academic Press, New York, 1974).MATHGoogle Scholar
  2. [2]
    S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives (Gordon and Breach, New York, 1993).MATHGoogle Scholar
  3. [3]
    K. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993).MATHGoogle Scholar
  4. [4]
    A. Kilbas, H. Strivatava and J. Trujillo, Theory and Application of Fractional Differential Equations (Wiley, New York, 1993).Google Scholar
  5. [5]
    I. Pdolubny, Fractional Differential Equations (Academic Press, New York, 1999).Google Scholar
  6. [6]
    R. Hilfer, Application of fractional Calculus in Physics (World Scientific Publishing Company, Singapore 2000).CrossRefGoogle Scholar
  7. [7]
    G. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics (Oxford University Press, Oxford, 2005).MATHGoogle Scholar
  8. [8]
    R. Metzler and J. Klafter, J. Phys. A 37, R161 (2004).ADSCrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    R. Herrmann, Phys. Lett. A 372, 5515 (2008).ADSCrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    O. Agrawal, J. Math. Anal. Appl. 272, 368 (2002).CrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    R. Almeida and D. Torres, Appl. Math. Lett. 22, 1816 (2009).CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    D. Baleanu, Phys. Scr. T136, 014006 (2009).ADSCrossRefGoogle Scholar
  13. [13]
    A. Iomin, Phys. Rev. E 80, 022103 (2009).ADSCrossRefGoogle Scholar
  14. [14]
    A. Stanislavsky, Phys. Rev. E 70, 051103 (2004).ADSGoogle Scholar
  15. [15]
    F. Mainardi, Yu. Luchko and G. Pagnini, Frac. Calc. Appl. Analys. 4, 153 (2001).MATHMathSciNetGoogle Scholar
  16. [16]
    M. Naber, J. Math. Phys. 45, 3339 (2004).ADSCrossRefMATHMathSciNetGoogle Scholar
  17. [17]
    M. Efe, Asian. J. Control 14, 413 (2012).CrossRefMathSciNetGoogle Scholar
  18. [18]
    Y. Li, Y. Chen and H. Ahn, Asian. J. Control 13, 54 (2011).CrossRefMATHMathSciNetGoogle Scholar
  19. [19]
    F. Riewe, Phys. Rev. E 53, 1890 (1996).ADSMathSciNetGoogle Scholar
  20. [20]
    F. Riewe, Phys. Rev. E 55, 3582 (1997).ADSMathSciNetGoogle Scholar
  21. [21]
    M. Klimek, Czech. Journ. Phys. 52, 1247 (2002).ADSCrossRefMATHMathSciNetGoogle Scholar
  22. [22]
    M. Klimek, Czech. Journ. Phys. 51, 1348 (2001).ADSCrossRefMATHMathSciNetGoogle Scholar
  23. [23]
    C. Shepherd and M. Naber, J. Math. Phys. 42, 2203 (2001).ADSCrossRefMATHMathSciNetGoogle Scholar
  24. [24]
    D. Baleanu and T. Avkar, Nuovo Cimento 119, 73 (2004).Google Scholar
  25. [25]
    E. Rabei and B. Ababneh, arXiv:0704.0519 (2007).Google Scholar
  26. [26]
    D. Baleanu and T. Avkar, Nuovo Cimento 119, 73 (2004).Google Scholar
  27. [27]
    S. Mulish and D. Baleanu, J. Math. anal. Appl. 304, 599 (2005).CrossRefMathSciNetGoogle Scholar
  28. [28]
    D. Baleanu, Signal Processing 86, 2632 (2006).CrossRefMATHGoogle Scholar
  29. [29]
    S. Mulish and D. Baleanu, Czech. J. Phys. 55, 633 (2005).ADSCrossRefGoogle Scholar
  30. [30]
    D. Baleanu and S. Mulish, Physica Scripta 72, 119 (2005).ADSCrossRefMATHMathSciNetGoogle Scholar
  31. [31]
    D. Baleanu and O. Agrawal, arXiv:0612025v1 (2006).Google Scholar
  32. [32]
    R. Saxena, A. Mathai and H. Haubold, arXiv:0206240 (2002).Google Scholar
  33. [33]
    M. Berberan-Santos, J. Math. Chem 38, 265 (2005).CrossRefMATHMathSciNetGoogle Scholar
  34. [34]
    A. Wiman, Acta Mathematica 29, 191 (1905).CrossRefMATHMathSciNetGoogle Scholar
  35. [35]
    S. Momani, R. Ibrahim, International Journal of Pure and Applied Mathematics 37, 119 (2007).MATHMathSciNetGoogle Scholar

Copyright information

© The Korean Physical Society 2014

Authors and Affiliations

  1. 1.Department of Physics and Research Institute of Natural Science, College of Natural ScienceGyeongsang National UniversityJinjuKorea

Personalised recommendations