Advertisement

Journal of the Korean Physical Society

, Volume 64, Issue 10, pp 1539–1544 | Cite as

Inelastic electron tunneling spectroscopy of molecular transport junctions

  • Hyunwook Song
  • Takhee Lee
  • Mark Reed
Article

Abstract

Inelastic electron tunneling spectroscopy (IETS) has become a premier analytical tool in the investigation of nanoscale and molecular junctions. The IETS spectrum provides invaluable information about the structure, bonding, and orientation of component molecules in the junctions. One of the major advantages of IETS is its sensitivity and resolution at the level of single molecules. This review discusses how IETS is used to study molecular transport junctions and presents an overview of recent experimental studies.

Keywords

Inelastic electron tunneling spectroscopy Molecular electronics Molecular junctions 

PACS numbers

73.63.Rt 81.07.Nb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Song, M. A. Reed and T. Lee, Adv. Mater. 23, 1583 (2010).CrossRefGoogle Scholar
  2. [2]
    N. J. Tao, Nat. Nanotechnol. 1, 173 (2006).ADSCrossRefGoogle Scholar
  3. [3]
    H. B. Akkerman and B. de Boer, J. Phys.: Condens. Matter 20, 013001 (2008).ADSGoogle Scholar
  4. [4]
    S. J. van der Molen and P. Liljeroth, J. Phys.: Condens. Matter 22, 133001 (2010).ADSGoogle Scholar
  5. [5]
    J. C. Cuevas and E. Scheer, Molecular Electronics: An Introduction to Theory and Experiment (World Scientific, Singapore, 2009).Google Scholar
  6. [6]
    M. A. Reed and T. Lee, Molecular Nanoelectronics (American Scientific, Stevenson Ranch, 2003).Google Scholar
  7. [7]
    J. R. Heath, Annu. Rev. Master. Res. 39, 1 (2009).ADSCrossRefGoogle Scholar
  8. [8]
    R. L. McCreery, A. J. Bergren, Adv. Mater. 21, 4303 (2009).CrossRefGoogle Scholar
  9. [9]
    J. Lambe and R. C. Jaklevic, Phys. Rev. 165, 821 (1968).ADSCrossRefGoogle Scholar
  10. [10]
    R. C. Jaklevic and J. Lambe, Phys. Rev. Lett. 17, 1139 (1966).ADSCrossRefGoogle Scholar
  11. [11]
    M. A. Reed, Mater. Today 11, 46 (2008).CrossRefGoogle Scholar
  12. [12]
    M. Galperin, M. A. Ratner, A. Nitzan and A. Troisi, Science 319, 1056 (2008).ADSCrossRefGoogle Scholar
  13. [13]
    W. Wang, T. Lee, I. Kretzschmar and M. A. Reed, Nano Lett. 4, 643 (2004).ADSCrossRefGoogle Scholar
  14. [14]
    J. G. Kushmerick, J. Lazorcik, C. H. Patterson, R. Shashidhar, D. S. Seferos and G. C. Bazan, Nano Lett. 4, 639 (2004).ADSCrossRefGoogle Scholar
  15. [15]
    P. K. Hansma, Phys. Lett. C Phys. Rep. 30, 145 (1977).CrossRefGoogle Scholar
  16. [16]
    T. Horiuchi, F. Ebisawa and H. Tabei, Rev. Sci. Instrum. 60, 993 (1989).ADSCrossRefGoogle Scholar
  17. [17]
    H. Song, Y. Kim, J. Ku, Y. H. Jang, H. Jeong and T. Lee, Appl. Phys. Lett. 94, 103110 (2009).ADSCrossRefGoogle Scholar
  18. [18]
    A. Troisi, M. A. Ratner and A. Nitzan, J. Chem. Phys. 118, 6072 (2003).ADSCrossRefGoogle Scholar
  19. [19]
    D. P. Long, J. L. Lazorcik, B. A. Mantooth, M. H.Moore, M. A. Ratner, A. Troisi, Y. Yao, J. W. Ciszek, J. M. Tour and R. Shashidhar, Nat. Mater. 5, 901 (2006).ADSCrossRefGoogle Scholar
  20. [20]
    H. Song, Y. Kim, H. Jeong, M. A. Reed and T. Lee, J. Phys. Chem. C 114, 20431 (2010).CrossRefGoogle Scholar
  21. [21]
    J. M. Beebe, H. J. Moore, T. R. Lee and J. G. Kushmerick, Nano Lett. 7, 1364 (2007).ADSCrossRefGoogle Scholar
  22. [22]
    A. Troisi, J. M. Beebe, L. B. Picraux, R. D. van Zee, D. R. Stewart, M. A. Ratner and J. G. Kushmerick, Proc. Natl. Acad. Sci. USA 104, 14255 (2007).ADSCrossRefGoogle Scholar
  23. [23]
    L. J. Lauhon and W. Ho, Rev. Sci. Instrum. 72, 216 (2001).ADSCrossRefGoogle Scholar
  24. [24]
    H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed and T. Lee, Nature 462, 1039 (2009).ADSCrossRefGoogle Scholar
  25. [25]
    B. C. Stipe, M. A. Rezaei and W. Ho, Science 280, 1732 (1998).ADSCrossRefGoogle Scholar
  26. [26]
    W. Ho, J. Chem. Phys. 117, 11033 (2000).ADSCrossRefGoogle Scholar
  27. [27]
    G. Binnig, N. Garcia and H. Rohrer, Phys. Rev. B 32, 1336 (1985).ADSCrossRefGoogle Scholar
  28. [28]
    S. Gregory, Phys. Rev. Lett. 64, 689 (1990).ADSCrossRefGoogle Scholar
  29. [29]
    J. G. Kushmerick, D. B. Holt, J. C. Yang, J. Naciri, M. H. Moore and R. Shashidhar, Phys. Rev. Lett. 89, 086802 (2002).ADSCrossRefGoogle Scholar
  30. [30]
    J. Hihath, C. R. Arroyo, G. Rubio-Bollinger, N. J. Tao and N. Agrait, Nano Lett. 8, 1673 (2008).ADSCrossRefGoogle Scholar
  31. [31]
    J. Moreland and J. W. Ekin, J. Appl. Phys. 58, 3888 (1985).ADSCrossRefGoogle Scholar
  32. [32]
    C. J. Muller, J. M. van Ruitenbeek and L. J. de Jongh, Physica C 191, 485 (1992).ADSCrossRefGoogle Scholar
  33. [33]
    R. Huber, M. T. Gonzalez, S. Wu, M. Langer, S. Grunder, V. Horhoiu, M. Mayor, M. R. Bryce, C. S. Wang, R. Jitchati, C. Schonenberger and M. J. Calame, J. Am. Chem. Soc. 130, 1080 (2008).CrossRefGoogle Scholar
  34. [34] S.Wu
    M. T. Gonzalez, R. Huber, S. Grunder, M. Mayor, C. Schönenberger and M. Calame Nat. Nanotech. 3, 569 (2008).ADSCrossRefGoogle Scholar
  35. [35]
    M. T. Gonzalez, S. Wu, R. Huber, S. J. van der Molen, C. Schönenberger and M. Calame, Nano Lett. 6, 2238 (2006).ADSCrossRefGoogle Scholar
  36. [36]
    E. Lörtscher, H. Weber and H. Riel, Phys. Rev. Lett. 98, 176807 (2007).ADSCrossRefGoogle Scholar
  37. [37]
    M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin and J. M. Tour, Science 278, 252 (1997).CrossRefGoogle Scholar
  38. [38]
    Y. Kim, H. Song, F. Strigl, H.-F. Pernau, T. Lee and E. Scheer, Phys. Rev. Lett. 106, 196804 (2011).ADSCrossRefGoogle Scholar
  39. [39]
    Y. Kim, T. J. Hellmuth, M. Burkle, F. Pauly and E. Scheer, ACS Nano 5, 4104 (2011).CrossRefGoogle Scholar
  40. [40]
    Y. Kim, A. Garcia-Lekue, D. Sysoiev, T. Frederiksen, U. Groth and E. Scheer, Phys. Rev. Lett. 109, 226801 (2012).ADSCrossRefGoogle Scholar
  41. [41]
    J. Kushmerick, Nature 462, 994 (2009).ADSCrossRefGoogle Scholar
  42. [42]
    E. A. Osorio, K. ONeill, M. Wegewijs, N. Stuhr-Hansen, J. Paaske, T. Bjrnholm and H. S. J. van der Zant, Nano. Lett. 7, 3336 (2007).ADSCrossRefGoogle Scholar
  43. [43]
    J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruna, P. L. McEuen and D. C. Ralph, Nature 417, 722 (2002).ADSCrossRefGoogle Scholar
  44. [44]
    M. Galperin, M. A. Ratner and A. J. Nitzan, J. Chem. Phys. 121, 11965 (2004).ADSCrossRefGoogle Scholar
  45. [45]
    B. N. J. Persson and A. Baratoff, Phys. Rev. Lett. 59, 339 (1987).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2014

Authors and Affiliations

  1. 1.Department of Applied PhysicsKyung Hee UniversityYonginKorea
  2. 2.Department of Physics and AstronomySeoul National UniversitySeoulKorea
  3. 3.Departments of Electrical Engineering Applied Physics Yale UniversityNew HavenUSA

Personalised recommendations