Journal of the Korean Physical Society

, Volume 64, Issue 9, pp 1248–1258 | Cite as

Approximate bound-state solutions of the Dirac equation for the generalized yukawa potential plus the generalized tensor interaction

  • Akpan N. Ikot
  • Elham Maghsoodi
  • Hassan Hassanabadi
  • Joseph A. Obu
Article

Abstract

In this paper, we obtain the approximate analytical bound-state solutions of the Dirac particle with the generalized Yukawa potential within the framework of spin and pseudospin symmetries for the arbitrary к state with a generalized tensor interaction. The generalized parametric Nikiforov-Uvarov method is used to obtain the energy eigenvalues and the corresponding wave functions in closed form. We also report some numerical results and present figures to show the effect of the tensor interaction.

Keywords

Generalized Yukawa potential Generalized tensor interactions Nikiforov-Uvarov method Spin symmetry Pseudospin symmetry 

PACS numbers

03.65.Ge 03.65.Pm 03.65.Db 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Greiner, Relativistic Quantum Mechanics (Springer, Berlin, 2000).MATHGoogle Scholar
  2. [2]
    C. S. Jia, P. Guo and X. L. Peng, J. Phys. A: Math. Gen. 39, 7737 (2006).ADSCrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar and H. Rahimov, Chin. Phys. B 21, 120302 (2012).ADSCrossRefGoogle Scholar
  4. [4]
    M. Esgghi and H. Mehraban, Few-Body Syst. 52, 41 (2012).ADSCrossRefGoogle Scholar
  5. [5]
    E. Maghsoodi, H. Hassanabadi, H. Rahimov and S. Zarrinkamar, Chin. Phys. C 37, 04105 (2013).CrossRefGoogle Scholar
  6. [6]
    H. Hassanabadi, M. Maghsoodi and S. Zarrinkamar, Euro. Phys. J. Plus 127, 31 (2012).CrossRefGoogle Scholar
  7. [7]
    M. Hamzavi and A. A. Rajabi, Chin. Phys. B 22, 080302 (2013).CrossRefGoogle Scholar
  8. [8]
    O. Aydogdu and R. Sever, Few-Body Syst. 47, 193 (2010).ADSCrossRefGoogle Scholar
  9. [9]
    A. N. Ikot, Few-Body Syst. 53, 549 (2012).ADSCrossRefGoogle Scholar
  10. [10]
    A. N. Ikot, Commun. Theor. Phys. 59, 268 (2013).CrossRefMATHGoogle Scholar
  11. [11]
    H. Hamzavi, A. A. Rajabi and H. Hassanabadi, Phys. Lett. A 374, 4303 (2010).ADSCrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    O. Aydogdu and R. Sever, Few-Body Syst. 47, 193 (2010).ADSCrossRefGoogle Scholar
  13. [13]
    H. Hassanabadi, S. Zarrinkamar and M. Hamzavi, Few-Body Syst. 37, 209 (2012).MathSciNetGoogle Scholar
  14. [14]
    J. N. Ginocchio, Phys. Rep. 414, 165 (2005).ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    D. Troltenier, C. Bahri and J. P. Draayer, Nucl. Phys. A 586, 53 (1995).ADSCrossRefGoogle Scholar
  16. [16]
    J. Dudek, W. Nazarewicz, Z. Szymanski and G. ALeander, Phys. Rev. Lett. 59, 1405 (1987).ADSCrossRefGoogle Scholar
  17. [17]
    P. R. Page, T. Goldman and J. N. Ginocchio, Phys. Rev. Lett. 66, 204 (2001).ADSCrossRefGoogle Scholar
  18. [18]
    J. N. Ginocchio, Phys. Rev. C 69, 034318 (2004).ADSCrossRefGoogle Scholar
  19. [19]
    J. N. Ginocchio, Phys. Rev. Lett. 78, 436 (1997).ADSCrossRefGoogle Scholar
  20. [20]
    S. M. Ikhdair and R. Sever, Appl. Math. & Comp. 216, 911 (2010).CrossRefMATHMathSciNetGoogle Scholar
  21. [21]
    E. Maghsoodi, H. Hassanabadi and S. Zarrinkamar, Few-Body Syst. 53, 525 (2012).ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    S. M. Ikhdair, J. Math. Phys. 52, 052303 (2011).Google Scholar
  23. [23]
    H. Hamzavi, M. Eshghi and S.M. Ikhdair, J. Math. Phys. Doi: org /10. 10603 /1. 4739434.
  24. [24]
    E. Maghsoodi, H. Hassanabadi and O. Aydogdu, Phys. Scr. 86, 015005 (2012).ADSCrossRefGoogle Scholar
  25. [25]
    H. Hassanabadi, H. Rahimov and S. Zarrinkamar, Ann. Phys. (Berlin) 523, 566 (2011).CrossRefMathSciNetGoogle Scholar
  26. [26]
    H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar and H. Rahimov, Mod. Phys. Lett. A 26, 2703 (2011).ADSCrossRefMATHMathSciNetGoogle Scholar
  27. [27]
    H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar and H. Rahimov, Can. J. Phys. 90, 633 (2012).CrossRefGoogle Scholar
  28. [28]
    A. N. Ikot, E. Maghsoodi, A. D. Antia, S. Zarrinkamar and H. Hassanabadi, Can. J. Phys. 91, 560 (2013).CrossRefGoogle Scholar
  29. [29]
    H. Hassanabadi, E. Maghsoodi and S. Zarrinkamar, Commun. Theor. Phys. 58, 807 (2012).ADSCrossRefMATHGoogle Scholar
  30. [30]
    A. N. Ikot, H. Hassanabadi, B. H. Yazarloo and S. Zarrinkamar, Int. J. Mod. Phys. E 22, 1350048 (2013).ADSCrossRefGoogle Scholar
  31. [31]
    H. Yukawa, Proc. Phys. Math. Soc. Japan 17, 48 (1935).Google Scholar
  32. [32]
    E. Maghsoodi, H. Hassanabadi and O. Aydogdu, Phys. Scr. 86, 015005 (2012).ADSCrossRefGoogle Scholar
  33. [33]
    S. M. Ikhdair and B. J. Falaye, Phys. Scr. 87, 035002 (2013).ADSCrossRefGoogle Scholar
  34. [34]
    M. Hamzavi, M. Movahedi, K. E Thylwe and A. A. Rajabi, Chin. Phys. Lett. 29, 080302 (2012).ADSCrossRefGoogle Scholar
  35. [35]
    Y. Y. Li, X. Q. Luo and H. Kroger, Sci. China G 49, 60 (2005).CrossRefGoogle Scholar
  36. [36]
    C. I. Pekeris, Phys. Rev. 45, 98 (1934).ADSCrossRefGoogle Scholar
  37. [37]
    A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics (Birkhauser, Basel, 1988).CrossRefMATHGoogle Scholar
  38. [38]
    C. Tezcan and R. Sever, Int. J. Theor. Phys. 48, 337 (2009).CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© The Korean Physical Society 2014

Authors and Affiliations

  • Akpan N. Ikot
    • 1
  • Elham Maghsoodi
    • 2
  • Hassan Hassanabadi
    • 2
  • Joseph A. Obu
    • 3
  1. 1.Theoretical Physics Group, Department of PhysicsUniversity of Uyo-NigeriaUyoNigeria
  2. 2.Department of Basic Sciences, Shahrood BranchIslamic Azad UniversityShahroodIran
  3. 3.Department of PhysicsUniversity of CalabarCalabarNigeria

Personalised recommendations