Advertisement

Journal of the Korean Physical Society

, Volume 64, Issue 8, pp 1213–1219 | Cite as

Temporal Hebbian plasticity designed for efficient competitive learning

  • Myoung Won ChoEmail author
Article

Abstract

Understanding the functional roles of temporal Hebbian plasticity has been of growing interest since several experiments revealed that the change in synaptic efficacy was determined by the precise temporal relation between post- and presynaptic spikes. We here investigate the learning properties of the typical synaptic modification forms. We explain how the peculiar characteristics in synaptic modification, such as asymmetry, decay rate, and oscillatory behavior, exert effects on the direction and the performance of network formation. Also, we argue that the aforementioned characteristics help to achieve proper network adaptation, such as activity-dependent columnar organization, through an efficient competitive learning process.

Keywords

Neural networks Spike-timing-dependent plasticity Competitive learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. B. Levy and D. Steward, Neurosci. 8, 791 (1983).CrossRefGoogle Scholar
  2. [2]
    B. Gustafsson, H. Wigstrom, W. C. Abraham and Y.-Y. Huang, J. Neurosci. 7, 774 (1987).Google Scholar
  3. [3]
    D. Debanne, B. H. Gahwiller and S. M. Thompson, Proc. Natl. Acad. Sci. USA 91, 1148 (1994).ADSCrossRefGoogle Scholar
  4. [4]
    J. C. Magee and D. A. Johnson, Science 275, 209 (1997).CrossRefGoogle Scholar
  5. [5]
    C. Bell, V. Han, Y. Sugawara and K. Grant, Nature 387, 278 (1997).ADSCrossRefGoogle Scholar
  6. [6]
    D. Debanne, B. H. Gahwiller and S. M. Thompson, J. PHysiol. 507, 237 (1998).CrossRefGoogle Scholar
  7. [7]
    H. Markram, J. Lubke, M. Frotscher and B. Sakmann, Science 275, 213 (1997).CrossRefGoogle Scholar
  8. [8]
    G.-Q. Bi and M.-M. Poo, J. Neurosci. 18, 10464 (1998).Google Scholar
  9. [9]
    L. Zhang, H. Tao, C. Holt, W. Harris and M.-M. Poo, Nature 95, 37 (1988).Google Scholar
  10. [10]
    V. Egger, D. Feldemeyer and B. Sakmann, Nat. Neurosci. 2, 1098 (1999).CrossRefGoogle Scholar
  11. [11]
    D. E. Feldman, Neuron 27, 45 (2000).CrossRefGoogle Scholar
  12. [12]
    L. F. Abbott and S. B. Nelson, Nat. Neurosci. 3, 1178 (2000).CrossRefGoogle Scholar
  13. [13]
    P. D. Roberts and C. C. Bell, Biol. Cybern. 87, 392 (2002).CrossRefzbMATHGoogle Scholar
  14. [14]
    C. W. Eurich, K. Pawelzik, J. D. Cowan and J. G. Milton, Phys. Rev. Lett. 15, 1594 (1999).ADSCrossRefGoogle Scholar
  15. [15]
    J. Rubin, D. D. Lee and H. Sompolinsky, H. Phys. Rev. Lett. 86, 364 (2001).ADSCrossRefGoogle Scholar
  16. [16]
    S. Song and L. F. Abbott, Neuron 32, 339 (2001).CrossRefGoogle Scholar
  17. [17]
    C. C. Rumsey and L. F. Abbott, J. Neurophysiol. 91, 2273 (2004).CrossRefGoogle Scholar
  18. [18]
    R. Kempter, W. Gerstner and J. L. van Hemmen, Phys. Rev. E 59, 4498 (1999).ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    S. Song, K. D. Miller and L. F. Abbott, Nat. Neurosci. 3, 919 (2000).CrossRefGoogle Scholar
  20. [20]
    H. Cateau and T. Fukai, Neural Comput. 15, 597 (2003).CrossRefzbMATHGoogle Scholar
  21. [21]
    M. W. Cho and M. Y. Choi, Europhys. Lett. 95, 58005 (2011).ADSCrossRefGoogle Scholar
  22. [22]
    P. Dayan and L. F. Abbott, Theoretical Neuroscience (MIT Press, London, 2001).zbMATHGoogle Scholar
  23. [23]
    D. Hansel, G. Mato and C. Meunier, Europhys. Lett. 23, 367 (1993).ADSCrossRefGoogle Scholar
  24. [24]
    M.-H. Park and S. Kim, J. Korean Phys. Soc. 29, 9 (1996).Google Scholar
  25. [25]
    K. D. Miller, J. B. Keller and M. P. Stryker, Science 245, 605 (1989).ADSCrossRefGoogle Scholar
  26. [26]
    K. D. Miller, J. Neurosci. 14, 409 (1994).Google Scholar
  27. [27]
    M. W. Cho and M. Y. Choi, J. Korean Phys. Soc. 55, 2532 (2009).ADSCrossRefGoogle Scholar
  28. [28]
    M. W. Cho and M. Y. Choi, Europhys. Lett. 101, 48004 (2013).ADSCrossRefGoogle Scholar
  29. [29]
    J. Goldberg, K. Holthoff and R. Yuste, TRENDS in Neurosci. 25, 433 (2002).CrossRefGoogle Scholar
  30. [30]
    C. C. Rumsey and L. F. Abbott, J. Neurophysiol. 96, 2307 (2006).CrossRefGoogle Scholar
  31. [31]
    R. Gütig, R. Aharnov, S. Rotter and H. Sompolinsky, J. Neurosci. 23, 3697 (2003).Google Scholar
  32. [32]
    L. F. Abbott, Zoology 106, 365 (2003).CrossRefGoogle Scholar
  33. [33]
    M. W. Cho and M. Y. Choi, Phys. Rev. Lett. 98, 208102 (2007).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2014

Authors and Affiliations

  1. 1.Department of Global Medical ScienceSungshin Women’s UniversitySeoulKorea

Personalised recommendations