Journal of the Korean Physical Society

, Volume 63, Issue 3, pp 398–400 | Cite as

Low temperature transport properties of the quadrupolar Kondo lattice system PrTi2Al20

  • Akito Sakai
  • Satoru NakatsujiEmail author


We have investigated the low temperature transport properties of the cubic Γ3 compound PrTi2Al20. This is a quadrupolar Kondo lattice system where the nongmagnetic quadrupoles, which form a long-range order at low temperatures, have strong hybridization with the conduction electrons. A sharp drop of the resistivity due to a ferroquadrupole ordering is observed at T Q = 2.0 K. The T 2 dependence of the resistivity and the large Sommerfeld coefficient γ above T Q suggest the formation of a heavy-fermion state. The temperature dependence of the resistivity below T Q does not show a power law but exponential law behavior, indicating the emergence of an anisotropy gap Δ in the collective mode associated with the ferroquadrupole order below T Q. The Fisher-Langer relation holds around T Q, suggesting the higher order scattering processes than those in Born approximation are not dominant for this ferroquadrupole ordering.


PrTr2Al20 Quadrupolar Kondo lattice Nonmagnetic Kondo effect Quadrupolar order 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. L. Cox, Phys. Rev. Lett. 59, 1240 (1987).ADSCrossRefGoogle Scholar
  2. [2]
    D. L. Cox and M. Makivic, Physica B 199–200, 391 (1994).CrossRefGoogle Scholar
  3. [3]
    H. Kusunose, K. Miyake, Y. Shimizu and O. Sakai, Phys. Rev. Lett. 76, 271 (1996).ADSCrossRefGoogle Scholar
  4. [4]
    P. Morin et al., J. Magn. Magn. Mater. 30, 257 (1982).ADSCrossRefGoogle Scholar
  5. [5]
    A. Yatskar et al. Phys. Rev. Lett. 77, 3637 (1996).ADSCrossRefGoogle Scholar
  6. [6]
    H. Tanida et al., J. Phys. Soc. Jpn. 75, 073705 (2006).ADSCrossRefGoogle Scholar
  7. [7]
    A. Sakai and S. Nakatsuji, J. Phys. Soc. Jpn. 80, 063701 (2011).ADSCrossRefGoogle Scholar
  8. [8]
    M. Matsunami et al., Phys. Rev. B 84, 193101 (2011).ADSCrossRefGoogle Scholar
  9. [9]
    T. J. Sato, S. Ibuka, Y. Nambu, T. Yamazaki, A. Sakai and S. Nakatsuji, arXiv0301828.Google Scholar
  10. [10]
    M. Koseki et al., J. Phys. Soc. Jpn. 80, SA049 (2011).Google Scholar
  11. [11]
    T. U. Ito et al., J. Phys. Soc. Jpn. 80, 113703 (2011).ADSCrossRefGoogle Scholar
  12. [12]
    Devin C Schmitt, Michael Kangas, Julia Chan, A. Sakai and S. Nakatsuji, preprint.Google Scholar
  13. [13]
    N. H. Andersen et al., Phys. Rev. Lett. 32, 1321 (1974).ADSCrossRefGoogle Scholar
  14. [14]
    M. E. Fisher and J. S. Langer, Phys. Rev. Lett. 20, 665 (1968).ADSCrossRefGoogle Scholar
  15. [15]
    P. Handler, D. E. Mapother and M. Rayl, Phys. Rev. Lett. 19, 356 (1967); P. P. Craig, W. I. Goldburg, T. A. Kitchens and J. I. Budnick: Phys. Rev. Lett. 19, 1334 (1967); F. C. Zumsteg and R. D. Parks: Phys. Rev. Lett. 24, 520 (1970).ADSCrossRefGoogle Scholar
  16. [16]
    K. N. Lee, R. Bachmann, T. H. Geballe and J. P. Maita, Phys. Rev. B 2, 4580 (1970).ADSCrossRefGoogle Scholar
  17. [17]
    W. Bao, G. Aeppli, J. W. Lynn, P. G. Pagliuso, J. L. Sarrao, M. F. Hundley, J. D. Thompson and Z. Fisk, Phys. Rev. B 65, 100505 (2002).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2013

Authors and Affiliations

  1. 1.Institute for Solid State PhysicsUniversity of TokyoKashiwaJapan

Personalised recommendations