Journal of the Korean Physical Society

, Volume 62, Issue 3, pp 518–522

Residual strain effects on the luminescence properties of self-organized GaN vertical nanorods grown by using HVPE

Article
  • 121 Downloads

Abstract

The optical, structural, and vibrational properties of self-assembled GaN nanorods (NRs) were systematically examined to help understand the impact of residual strains on their emission properties. The GaN NRs grown at temperatures less than 550 °C displayed line-defects along the a-axis, which are responsible for the residual compressive strain in the GaN NRs. The residual compressive strain, which depends on the growth temperature, gave rise to a blue-shift of the effective optical band-gap. Compared to the GaN thin films, the influence of residual strains on the blue-shift were more than 3-times greater for GaN NRs. This implies that growth interruptions to control the growth temperatures and/or source fluxes would be more critical in the fabrication of GaN-NR-based light-emitting devices.

Keywords

GaN Nanorod Photoluminescence Cathodoluminescence Strain effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Li and A. Waag, J. Appl. Phys. 111, 071101 (2012).ADSCrossRefGoogle Scholar
  2. [2]
    C. H. Chiu et al., Nanotechnology 18, 445201 (2007).ADSCrossRefGoogle Scholar
  3. [3]
    M.-L. Kuo, Y.-S. Kim, M.-L. Hsieh and S.-Y. Lin, Nano Lett. 11, 476 (2011).ADSCrossRefGoogle Scholar
  4. [4]
    H.-W. Lin, Y.-J. Lu, H.-Y. Chen, H.-M. Lee and S. Gwo, Appl. Phys. Lett. 97, 073101 (2010).ADSCrossRefGoogle Scholar
  5. [5]
    K. Zang and S. J. Chua, Phys. Status Solidi C 7, 2236 (2010).ADSCrossRefGoogle Scholar
  6. [6]
    H. Ying-Yuan et al., Nanotechnology 22, 045202 (2011).ADSCrossRefGoogle Scholar
  7. [7]
    J. Bai, Q. Wang and T. Wang, Phys. Status Solidi A 209, 477 (2012).ADSCrossRefGoogle Scholar
  8. [8]
    D. Wang, C. C. Tin, J. R. Williams, M. Park, Y. S. Park, C. M. Park, T. W. Kang and W. C. Yang, Appl. Phys. Lett. 87, 242105 (2005).ADSCrossRefGoogle Scholar
  9. [9]
    H.-Y. Chen, H.-W. Lin, C.-H. Shen and S. Gwo, Appl. Phys. Lett. 89, 243105 (2006).ADSCrossRefGoogle Scholar
  10. [10]
    H. W. Seo, Q. Y. Chen, M. N. Iliev, L. W. Tu, C. L. Hsiao, J. K. Mean and W.-K. Chu, Appl. Phys. Lett. 88, 153124 (2006).ADSCrossRefGoogle Scholar
  11. [11]
    L. W. Tu, C. L. Hsiao, T. W. Chi, I. Lo and K. Y. Hsieh, Appl. Phys. Lett. 82, 1601 (2003).ADSCrossRefGoogle Scholar
  12. [12]
    C.-Y. Nam, P. Jaroenapibal, D. Tham, D. E. Luzzi, S. Evoy and J. E. Fischer, Nano Lett. 6, 153 (2006).ADSCrossRefGoogle Scholar
  13. [13]
    H. Choe, S. Lee, Y. Sohn and C. Kim, Phys. Status Solidi C 5, 1699 (2008).ADSCrossRefGoogle Scholar
  14. [14]
    S. Lee, H. S. Lee, C. S. Han, T. W. Kang and D. Y. Kim, J. Cryst. Growth 297, 10 (2006).ADSCrossRefGoogle Scholar
  15. [15]
    H.-M. Kim, D. S. Kim, D. Y. Kim, T. W. Kang, Y.-H. Cho and K. S. Chung, Appl. Phys. Lett. 81, 2193 (2002).ADSCrossRefGoogle Scholar
  16. [16]
    R. Dingle, D. D. Sell, S. E. Stokowski and M. Ilegems, Phys. Rev. B 4, 1211 (1971).ADSCrossRefGoogle Scholar
  17. [17]
    F. Widmann, J. Simon, B. Daudin, G. Feuillet, J. L. Rouvi`ere, N. T. Pelekanos and G. Fishman, Phys. Rev. B 58, R15989 (1998).ADSCrossRefGoogle Scholar
  18. [18]
    F. Widmann, B. Daudin, G. Feuillet, Y. Samson, J. L. Rouviere and N. Pelekanos, J. Appl. Phys. 83, 7618 (1998).ADSCrossRefGoogle Scholar
  19. [19]
    S. Chichibu, A. Shikanai, T. Azuhata, T. Sota, A. Kuramata, K. Horino and S. Nakamura, Appl. Phys. Lett. 68, 3766 (1996).ADSCrossRefGoogle Scholar
  20. [20]
    K. Fleischer, M. Toth, M. R. Phillips, J. Zou, G. Li and S. J. Chua, Appl. Phys. Lett. 74, 1114 (1999).ADSCrossRefGoogle Scholar
  21. [21]
    D. G. Zhao, S. J. Xu, M. H. Xie, S. Y. Tong and H. Yang, Appl. Phys. Lett. 83, 677 (2003).ADSCrossRefGoogle Scholar
  22. [22]
    W. Rieger, T. Metzger, H. Angerer, R. Dimitrov, O. Ambacher and M. Stutzmann, Appl. Phys. Lett. 68, 970 (1996).ADSCrossRefGoogle Scholar
  23. [23]
    A. Shikanai, T. Azuhata, T. Sota, S. Chichibu, A. Kuramata, K. Horino and S. Nakamura, J. Appl. Phys. 81, 417 (1997).ADSCrossRefGoogle Scholar
  24. [24]
    Y. Xie, Y. Qian, W. Wang, S. Zhang and Y. Zhang, Science 272, 1926 (1996).ADSCrossRefGoogle Scholar
  25. [25]
    K. Kanaya and S. Okayama, J. Phys. D: Appl. Phys. 5, 43 (1972).ADSCrossRefGoogle Scholar
  26. [26]
    G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974).Google Scholar
  27. [27]
    M. Suzuki, T. Uenoyama and A. Yanase, Phys. Rev. B 52, 8132 (1995).ADSCrossRefGoogle Scholar
  28. [28]
    H.-L. Liu, C.-C. Chen, C.-T. Chia, C.-C. Yeh, C.-H. Chen, M.-Y. Yu, S. Keller and S. P. DenBaars, Chem. Phys. Lett. 345, 245 (2001).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2013

Authors and Affiliations

  1. 1.Quantum-functional Semiconductor Research CenterDongguk University-SeoulSeoulKorea
  2. 2.Department of Semiconductor ScienceDongguk University-SeoulSeoulKorea

Personalised recommendations