Journal of the Korean Physical Society

, Volume 62, Issue 3, pp 502–507 | Cite as

A pilot investigation on laser annealing for thin-film solar cells: Crystallinity and optical properties of laser-annealed CdTe thin films by using an 808-nm diode laser



Compared to conventional furnace and rapid thermal annealing, laser annealing for heterojunctioned thin-film solar cells has several advantages including excellent annealing selectivity to the under-layers with a localized high temperature for a short process time. A continuous wave 808-nm diode laser was used for the laser annealing process of CdTe thin films for various output powers. The grains in the laser-annealed CdTe thin films grew along the C (111), H (110), and C (311) planes. Laser annealing resulted in an increase in grain size and a decrease in surface roughness. The optical band gap energy of the CdTe thin films was affected directly by the grain size, showing 1.460 eV and 1.415 eV for the as-deposited and laser-annealed CdTe thin films, respectively. The absorbance of the CdTe thin films with better crystallinity showed an improved value of 99.5–99.9% in the visible spectral region after laser annealing at an output power of 0.91 W.


CdTe Laser annealing 808-nm diode laser Sputtering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Sands, J. E. Nicholls, J. H. C. Hogg, S. Chalk, F. X. Wagner, W. E. Hagstona, M. O’Neill, B. Lunn and D. E. Ashenford, J. Cryst. Growth 184/185, 114 (1998).CrossRefGoogle Scholar
  2. [2]
    W. Tang, Z. Chen, S. He and H. Zhang, Procedia Chemistry 1, 786 (2009).CrossRefGoogle Scholar
  3. [3]
    L. Schade, S. Franzka, S. Hardt, H. Wiggers and N. Hartmann, Appl. Surf. Sci. (2013) doi:10.1016/j.apsusc.2012.11.077.Google Scholar
  4. [4]
    M. G. Kang, K. H. Cho, S. M. Oh, Y. H. Do, C. Y. Kang, S. Kim and S. J. Yoon, Curr. Appl. Phys. 11, S66 (2011).ADSCrossRefGoogle Scholar
  5. [5]
    A. Matsuno, E. Takii, T. Eto, K. Kurobe and K. Shibahara, Nucl. Instrum. Methods Phys. Res., Sect. B 237, 136 (2005).ADSCrossRefGoogle Scholar
  6. [6]
    M. Hädrich, C. Kraft, C. Löffler, H. Metzner, U. Reislöhner and W. Witthuhn, Thin Solid Films 517, 2282 (2009).ADSCrossRefGoogle Scholar
  7. [7]
    T. M. Razykov et al., Sol. Energy 83, 90 (2009).CrossRefGoogle Scholar
  8. [8]
    A. J. Al-Douri, F. Y. Al-Shakily, A. A. Alnajjar and M. F. A. Alias, Adv. Condens. Matter Phys. 2011, 910967 (2011).Google Scholar
  9. [9]
    Z. Said-Bacar, Y. Leroy, F. Antoni, A. Slaoui and E. Fogarassy, Appl. Surf. Sci. 257, 5127 (2011).ADSCrossRefGoogle Scholar
  10. [10]
    S. G. Ryu, I. Gruber, C. P. Grigoropoulos, D. Poulikakos and S. J. Moon, Thin Solid Films 520, 6724 (2012).ADSCrossRefGoogle Scholar
  11. [11]
    N. H. Kim, J. S. Park and W. S. Lee, J. Korean Phys. Soc. 59, 2286 (2011).CrossRefGoogle Scholar
  12. [12]
    N. H. Kim, K. D. Myung, G. B. Cho and W. S. Lee, J. Korean Phys. Soc. 60, 425 (2012).ADSCrossRefGoogle Scholar
  13. [13]
    G. K. Bhaumik, A. K. Nath and S. Basu, Mater. Sci. Eng., B 52, 25 (1998).CrossRefGoogle Scholar
  14. [14]
    A. Medvid, V. G. Litovchenko, D. Korbutjak, S. G. Krilyuk, L. L. Fedorenko and Y. Hatanaka, Radiat. Meas. 33, 725 (2001).CrossRefGoogle Scholar
  15. [15]
    G. M. Davis and M. C. Gower, Appl. Phys. Lett. 50, 1286 (1987).ADSCrossRefGoogle Scholar
  16. [16]
    K. M. Garadkar, S. J. Pawar, P. P. Hankare and A. A. Patil, J. Alloys Compd. 491, 77 (2010).CrossRefGoogle Scholar
  17. [17]
    N. H. AI-Hardan, K. T. AI-Rasoul and S. A. Hussain, J. Al-Qadisiyah Pure Sci. 15, 1 (2010).Google Scholar
  18. [18]
    J. C. Osuwa and N. I. Chigbo, Chalcogenide Lett. 9, 501 (2009).Google Scholar
  19. [19]
    X. Li, T. A. Gessert, R. J. Matson, J. F. Hall and T. J. Coutts, J. Vac. Sci. Technol., A 12, 1608 (1994).ADSCrossRefGoogle Scholar
  20. [20]
    B. D. Cullity, Elements of X-Ray Diffraction, 3rd ed. (Addison-Wesley, Reading, Mass., London, 1967).Google Scholar
  21. [21]
    G. Gordillo, J. M. Flórez and L. C. Hernández, Sol. Energy Mater. Sol. Cells 37, 273 (1995).CrossRefGoogle Scholar
  22. [22]
    A. Mahadkar, A. Chauhan, M. Thakurdesai and D. Gaikwad, in 2008 Physics Education Research Conference Part of the AIP Conference Proceedings series. Edmonton (Alberta, Canada, July 23–24, 2008), Chap. 1004, p. 305.Google Scholar
  23. [23]
    S. Neretina, N. V. Sochinskii and P. Mascher, J. Electron. Mater. 34, 786 (2005).ADSCrossRefGoogle Scholar
  24. [24]
    J. H. Lee, H. Y. Lee, Y. K. Park, S. H. Shin and K. J. Park, Jpn. J. Appl. Phys. 37, 3357 (1998).ADSCrossRefGoogle Scholar
  25. [25]
    A. Romeo, D. L. Bätzner, H. Zogg and A. N. Tiwari, Thin Solid Films 361, 420 (2000).ADSCrossRefGoogle Scholar
  26. [26]
    S. R. Aid, S. Matsumoto, G. Fuse and S. Sakuragi, Phys. Status Solidi A 208, 2772 (2011).ADSCrossRefGoogle Scholar
  27. [27]
    R. O. Bell, M. Toulemonde and P. Siffen, Appl. Phys. 19, 313 (1979).ADSCrossRefGoogle Scholar
  28. [28]
    C. Y. Tsay and M. C. Wang, Ceram. Int. 39, 469 (2013).CrossRefGoogle Scholar
  29. [29]
    N. H. Kim, S. H. Ryu, H. S. Noh and W. S. Lee, Mater. Sci. Semicon. Process. 15, 125 (2012).CrossRefGoogle Scholar
  30. [30]
    F. Meng, T. Sun and R. Cui, Semicond. Sci. Technol. 15, 926 (2000).ADSCrossRefGoogle Scholar
  31. [31]
    Q. Xu, R. D. Hong, H. L. Huang, Z. F. Zhang, M. K. Zhang, X. P. Chen and Zh. Y. Wu, Opt. Laser Technol. 45, 513 (2013).ADSCrossRefGoogle Scholar
  32. [32]
    X. Zhang, H. Zeng and W. Cai, Mater. Lett. 63, 191 (2009).CrossRefGoogle Scholar
  33. [33]
    H. Khallaf, G. Chai, O. Lupan, L. Chow, S. Park and A. Schulte, Appl. Surf. Sci. 255, 4129 (2009).ADSCrossRefGoogle Scholar
  34. [34]
    D. S. Reddy, K. N. Rao, K. R. Gunasekhar, N. K. Reddy, K. S. Kumar and P. S. Reddy, Mater. Res. Bull. 43, 3245 (2008).CrossRefGoogle Scholar
  35. [35]
    Y. Gu, X. Li, W. Yu, X. Gao, J. Zhao and C. Yang, J. Cryst. Growth 305, 36 (2007).ADSCrossRefGoogle Scholar
  36. [36]
    S. Wageh, A. A. Higazy and M. A. Algradee, J. Mod. Phys. 2, 913 (2011).CrossRefGoogle Scholar
  37. [37]
    C. V. Ramana, R. J. Smith and O. M. Hussain, Phys. Status Solidi A 199, R4 (2003).ADSCrossRefGoogle Scholar
  38. [38]
    J. M. P. Coelho, M. A. Abreu and F. C. Rodrigues, Polym. Test. 23, 307 (2004).CrossRefGoogle Scholar
  39. [39]
    D. Souri and K. Shomalian, J. Non-Cryst. Solids 355, 1597 (2009).ADSCrossRefGoogle Scholar
  40. [40]
    J. M. González-Leal, A. Ledesma, A. M. Bernal-Oliva, R. Prieto-Alcón, E. Márquez, J. A. Angel and J. Cárabe, Mater. Lett. 39, 232 (1999).CrossRefGoogle Scholar
  41. [41]
    R. Brüggemann, P. Reinig and M. Hölling, Thin Solid Films 427, 358 (2003).ADSCrossRefGoogle Scholar
  42. [42]
    G. L. Liu, Z. R. Huang, X. J. Liu and D. L. Jiang, Chin. Phys. Lett. 25, 1135 (2008).ADSCrossRefGoogle Scholar
  43. [43]
    H. Pan, D. Lee, S. H. Ko, C. P. Grigoropoulos, H. K. Park and T. Hoult, Appl. Phys. A 104, 29 (2011).ADSCrossRefGoogle Scholar
  44. [44]
    X. Wang, Y. Bellouard and J. J. Vlassak, Acta Mater. 53, 4955 (2005).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2013

Authors and Affiliations

  1. 1.Department of Electrical EngineeringChosun UniversityGwangjuKorea
  2. 2.Department of Advanced Materials EngineeringChosun UniversityGwangjuKorea

Personalised recommendations