Journal of the Korean Physical Society

, Volume 62, Issue 3, pp 428–434

All-optical signal-conversion efficiency with a parameter-dependent four-wave-mixing process in a silicon nanowaveguide

  • Heung-Sun Jeong
  • Dong Wook Kim
  • Kyong Hon Kim
  • Jong-Moo Lee
Article
  • 78 Downloads

Abstract

We report on experimental measurements of the signal-wavelength conversion efficiency through the four-wave-mixing (FWM) process in a silicon strip nanowaveguide (SiNW) compared with theoretically-calculated results. The conversion efficiency has been investigated as a function of various parameters, such as the pump power and the pump and signal wavelengths. The measured and the calculated results indicate that a significant variation of the chromatic dispersion (CD) of our test SiNW device among the pump, signal and idler beam wavelengths and a high insertion loss in the device cause a very low FWM conversion efficiency. Our simulation tool can provide a direction for further improvement in the waveguide design by providing optimized CD values for the SiNW in desired ranges of the operation wavelengths.

Keywords

Silicon photonics Nonlinear optic waveguides Design Characterization and Modeling of Integrated-optic Devices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Jalali and S. Fathpour, J. Lightwave Technol. 24, 4600 (2006).ADSCrossRefGoogle Scholar
  2. [2]
    J. Leuthold, C. Koos and W. Freude, Nat. Photon. 4, 535 (2010).ADSCrossRefGoogle Scholar
  3. [3]
    N. Ophir, R. K. W. Lau, M. Menard, X. Zhu, K. Padmaraju, Y. Okawachi, R. Salem, M. Lipson, A. L. Gaeta and K. Bergman, Opt. Express 20, 6488 (2012).ADSCrossRefGoogle Scholar
  4. [4]
    H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. Christian, H. Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen and L. K. Oxenlowe, Opt. Express 19, 19886 (2011).ADSCrossRefGoogle Scholar
  5. [5]
    M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson and A. L. Gaeta, Nature 441, 960 (2006).ADSCrossRefGoogle Scholar
  6. [6]
    J. Hansryd, A. Andrekson, M. Westlund, J. Li and P. Hedekvist, IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).CrossRefGoogle Scholar
  7. [7]
    K. Inoue, J. Lightwave Technol. 10, 1553 (1992).ADSCrossRefGoogle Scholar
  8. [8]
    K. Inoue and T. Mukai, Opt. Lett. 26, 10 (2001).ADSCrossRefGoogle Scholar
  9. [9]
    G. Cappellini and S. Trillo, J. Opt. Soc. Am. B 8, 824 (1991).ADSCrossRefGoogle Scholar
  10. [10]
    G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, Inc., Boston, 1989), Chap. 2.Google Scholar
  11. [11]
    K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Elsevier, Burlington, MA, 2006), p. 92.Google Scholar
  12. [12]
    D. W. Kim, S. H. Km, S. H. Lee, K. H. Kim, J.-M. Lee and E.-H. Lee, J. Lightwave Technol. 30, 43 (2012).ADSCrossRefGoogle Scholar
  13. [13]
    D. Dimitropoulos, V. Raghunathan, R. Claps and B. Jalali, Opt. Express 12, 149 (2004), and reference therein.ADSCrossRefGoogle Scholar
  14. [14]
    A. B. Fallahkhair, K. S. Li and T. E. Murphy, J. Lightwave Technol. 26, 1423 (2008).ADSCrossRefGoogle Scholar
  15. [15]
    Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet and G. P. Agrawal, Appl. Phys. Lett. 91, 021111 (2007).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2013

Authors and Affiliations

  • Heung-Sun Jeong
    • 1
  • Dong Wook Kim
    • 1
  • Kyong Hon Kim
    • 1
  • Jong-Moo Lee
    • 2
  1. 1.Department of PhysicsInha UniversityIncheonKorea
  2. 2.Electronics & Telecommunications Research Institute (ETRI)DaejeonKorea

Personalised recommendations