Journal of the Korean Physical Society

, Volume 62, Issue 2, pp 288–291 | Cite as

Position-dependent spontaneous motion of the magnetic domain wall in ferromagnetic nanowires

  • Xiao-Ping Ma
  • Hong-Guang Piao
  • Je-Ho Shim
  • Dede Djuhana
  • Dong-Hyun Kim
Article

Abstract

We have investigated the dependence of the spontaneous dynamics of the magnetic domain wall in ferromagnetic nanowires on the initial position of the domain wall without any external field. Using micromagnetic simulations, we have observed in detail a spontaneous magnetic domain wall motion for various wire widths and thicknesses. We have found that the average speed of the spontaneous domain wall motion significantly depends on the wire width and thickness, as well as the starting position of the domain wall motion. We conclude that the spontaneous magnetic domain wall motion should be considered very carefully in practical design of spintronic devices based on magnetic domain wall motion.

Keywords

Magnetic domain wall Magnetic pressure Spontaneous motion Micromagnetic simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Yamanouchi, D. Chiba, F. Matsukura and H. Ohno, Nature 428, 539 (2004).ADSCrossRefGoogle Scholar
  2. [2]
    D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit and R. P. Cowburn, Science 309, 1688 (2005).ADSCrossRefGoogle Scholar
  3. [3]
    S. S. P. Parkin, M. Hayashi and L. Thomas, Science 320, 190 (2008).ADSCrossRefGoogle Scholar
  4. [4]
    M. Hayashi, L. Thomas, R. Moriya, C. Rettner and S. S. P. Parkin, Science 320, 209 (2008).ADSCrossRefGoogle Scholar
  5. [5]
    D. G. Porter and M. J. Donahue, J. Appl. Phys. 95, 6729 (2004).ADSCrossRefGoogle Scholar
  6. [6]
    G. Meier, M. Bolte, R. Eiselt, B. Kraeuger, D-H. Kim and P. Fischer, Phys. Rev. Lett. 98, 187202 (2007).ADSCrossRefGoogle Scholar
  7. [7]
    E. Martinez, L. Lopez-Diaz, L. Torres, C. Tristan and O. Alejos, Phys. Rev. B 75, 174409 (2007).ADSCrossRefGoogle Scholar
  8. [8]
    J-Y. Lee, K-S. Lee, S. Choi, K. Y. Guslienko and S-K. Kim, Phys. Rev. B 76, 184408 (2007).ADSCrossRefGoogle Scholar
  9. [9]
    M. Hayashi, L. Thomas, C. Rettner, R. Moriya and S. S. P. Parkin, Nat. Phys. 3, 21 (2007).CrossRefGoogle Scholar
  10. [10]
    R. Varga, K. Richter, A. Zhukov and V. Larin, IEEE Trans. Magn. 44, 11 (2008).CrossRefGoogle Scholar
  11. [11]
    S-K. Kim, J-Y. Lee, Y-S. Choi, K. Y. Guslienko and K-S. Lee, Appl. Phys. Lett. 93, 052503 (2008).ADSCrossRefGoogle Scholar
  12. [12]
    C-Y. You, Appl. Phys. Lett. 92, 152507 (2008); C.-Y. You, Appl. Phys. Lett. 92, 192514 (2008).ADSCrossRefGoogle Scholar
  13. [13]
    D-S. Han, S-K. Kim, J-Y. Lee, S. J. Hermsoerfer, H. Schutheiss, B. Leven and B. Hillebrands, Appl. Phys. Lett. 94, 112502 (2009).ADSCrossRefGoogle Scholar
  14. [14]
    D. Djuhana, H-G. Piao, J-H. Shim, S-H. Lee, S-H. Jun, S-C. Yu, S. K. Oh and D-H. Kim, IEEE Trans. Magn. 46, 217 (2010).ADSCrossRefGoogle Scholar
  15. [15]
    A. Zhukov, Appl. Phys. Lett. 78, 3106 (2001).ADSCrossRefGoogle Scholar
  16. [16]
    R. Varga, A. Zhukov, J. M. Blanco, M. Ipatov, V. Zhukova, J. Gonzalez and P. Vojtaník,, Phys. Rev. B 74, 212405 (2006).ADSCrossRefGoogle Scholar
  17. [17]
    M. J. Donahue and D. G. Porter, National Institute of Standards and Technology Interagency Report No. NISTIR, 1999.Google Scholar
  18. [18]
    N. L. Schryer and L. R. Walker, J. Appl. Phys. 45, 5406 (1974).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2013

Authors and Affiliations

  • Xiao-Ping Ma
    • 1
  • Hong-Guang Piao
    • 2
  • Je-Ho Shim
    • 3
  • Dede Djuhana
    • 3
  • Dong-Hyun Kim
    • 3
  1. 1.College of ScienceHuaihai Institute of TechnologyLianyunguangChina
  2. 2.Laboratory of Advanced Materials, Department of Materials Science and EngineeringTsinghua UniversityBeijingChina
  3. 3.Department of PhysicsChungbuk National UniversityCheongjuKorea

Personalised recommendations