Advertisement

Journal of the Korean Physical Society

, Volume 62, Issue 2, pp 229–233 | Cite as

Symmetry energy studies in the chiral soliton model

  • Ulugbek Yakhshiev
Article

Abstract

We have studied the symmetry energy contribution to the binding energy per nucleon. The modifications of symmetry energy are performed in the framework of the in-medium modified chiral soliton model. The model incorporates the isospin symmetry breaking effects in the mesonic sector and reproduces the corresponding isospin breaking effects in the baryonic sector. Furthermore, the isospin breaking effects in the baryonic sector have been related to the nuclear symmetry energy.

Keywords

Skyrmions Protons and neutrons Asymmetric matter Symmetry energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. -A. Li, L.-W. Chen and C. M. Ko, Phys. Rep. 464, 113 (2008).ADSCrossRefGoogle Scholar
  2. [2]
    S. K. Bogner, R. J. Furnstahl and A. Schwenk, Prog. Part. Nucl. Phys. 65, 94 (2010).ADSCrossRefGoogle Scholar
  3. [3]
    U. T. Yakhshiev, J. Korean Phys. Soc. 60, 356 (2012).ADSCrossRefGoogle Scholar
  4. [4]
    U. T. Yakhshiev, J. Korean Phys. Soc. 57, 1170 (2010).ADSCrossRefGoogle Scholar
  5. [5]
    Hereafter, an asterisk in an expression indicates the explicit medium modification.Google Scholar
  6. [6]
    U. T. Yakhshiev and H.-C. Kim, Phys. Rev. C 83, 038203 (2011).ADSCrossRefGoogle Scholar
  7. [7]
    In principle, one can consider the spin rotation where the sign of a* will be the same as the sign of Ω3. However, that will not affect the final results.Google Scholar
  8. [8]
    Note, that the authors of Refs. 11 and 12 considered only one of the possible ways.Google Scholar
  9. [9]
    See Eq. (17) in the next section, where one of the relative signs in Eq. (12) reproduces the wrong sign of the symmetry energy coefficient a S(λ) during the numerical calculations.Google Scholar
  10. [10]
    Note that m* n,p, in general, depend on both the isoscalar ρ and the isovector δρ densitiees.Google Scholar
  11. [11]
    U. G. Meissner, A. M. Rakhimov, A. Wirzba and U. T. Yakhshiev, Eur. Phys. J. A 32, 299 (2007).ADSCrossRefGoogle Scholar
  12. [12]
    U. G. Meissner, A. M. Rakhimov, A. Wirzba and U. T. Yakhshiev, Eur. Phys. J. A 36, 37 (2008).ADSCrossRefGoogle Scholar
  13. [13]
    M. B. Tsang et al., Prog. Part. Nucl. Phys. 66, 400 (2011).ADSCrossRefGoogle Scholar
  14. [14]
    M. B. Tsang et al., Phys. Rev. C 86, 015803 (2012).ADSCrossRefGoogle Scholar
  15. [15]
    B. -A. Li and L.-W. Chen, Phys. Rev. C 72, 064611 (2005).ADSCrossRefGoogle Scholar
  16. [16]
    J. Piekarewicz and M. Centelles, Phys. Rev. C 79, 054311 (2009).ADSCrossRefGoogle Scholar
  17. [17]
    T. Ericson and W. Weise, Pions and Nuclei (Clarendon, Oxford, 1988).Google Scholar
  18. [18]
    H. -C. Kim, P. Schweitzer and U. T. Yakhshiev, Phys. Lett. B 718, 625 (2012).ADSCrossRefGoogle Scholar
  19. [19]
    M. M. Sharma, W. T. A. Borghols, S. Brandenburg, S. Crona, A. van der Woude and M. N. Harakeh, Phys. Rev. C 38, 2562 (1988).ADSCrossRefGoogle Scholar
  20. [20]
    S. Shlomo and D. H. Youngblood, Phys. Rev. C 47, 529 (1993).ADSCrossRefGoogle Scholar
  21. [21]
    T. Li et al., Phys. Rev. Lett. 99, 162503 (2007).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2013

Authors and Affiliations

  1. 1.Department of PhysicsInha UniversityIncheonKorea

Personalised recommendations