Journal of the Korean Physical Society

, Volume 62, Issue 12, pp 2197–2201 | Cite as

Antiferromagnetic phase transition of K-Rb alloy nanoclusters incorporated in sodalite

  • Takehito NakanoEmail author
  • Yuko Ishida
  • Atsufumi Hanazawa
  • Yasuo Nozue


We prepared Rb-rich K-Rb alloy nanoclusters arrayed in the regular nanospace of aluminosilicate sodalite which has a bcc arrangement of cages. The average chemical formula of the cluster is (K1.5Rb2.5)3+, where one unpaired s-electron is shared by four alkali cations and is confined in a cage. The magnetic susceptibility and the electron spin resonance clearly show an antiferromagnetic phase transition at a Néel temperature T N of approximately 90–100 K. The observed T N is higher than that in K 4 3+ (T N = 72 K) and (K3Rb)3+ clusters (T N = 80 K) in sodalites. This result indicates a systematic enhancement of the antiferromagnetic exchange coupling between the adjacent nanoclusters by substituting Rb atoms for K ones. The size and the spatial distribution of the s-electron wave function in the nanocluster play a key role in the exchange coupling.


Antiferromagnetism Alkali-metal cluster Zeolite Sodalite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Y. Nozue, T. Kodaira and T. Goto, Phys. Rev. Lett. 68, 3789 (1992); Y. Nozue, T. Kodaira, S. Ohwashi, T. Goto and O. Terasaki, Phys. Rev. B 48, 12253 (1993); T. Nakano and Y. Nozue, J. Comput. Methods Sci. Engin. 7, 443 (2007).ADSCrossRefGoogle Scholar
  2. [2]
    T. C. Duan, T. Nakano and Y. Nozue, J. Magn. Magn. Mater. 310, 1013 (2007); T. C. Duan, T. Nakano and Y. Nozue, e-J. Surf. Sci. Nanotech. 5, 6 (2007).ADSCrossRefGoogle Scholar
  3. [3]
    V. I. Srdanov, G. D. Stucky, E. Lippmaa and G. Engelhardt, Phys. Rev. Lett. 80, 2449 (1998).ADSCrossRefGoogle Scholar
  4. [4]
    T. Nakano, M. Matsuura, A. Hanazawa, K. Hirota and Y. Nozue, Phys. Rev. Lett. 109, 167208 (2012).ADSCrossRefGoogle Scholar
  5. [5]
    T. Nakano, K. Goto, I. Watanabe, F. L. Pratt, Y. Ikemoto and Y. Nozue, Physica B 374–375, 21 (2006); D. T. Hanh, T. Nakano and Y. Nozue, J. Phys. Chem. Solids 71, 677 (2010).CrossRefGoogle Scholar
  6. [6]
    The three-capital letters are codes of zeolite structure given by IUPAC (International Union of Pure and Applied Chemistry).Google Scholar
  7. [7]
    R. M. Barrer and J. F. Cole, J. Phys. Chem. Solids 29, 1755 (1968).ADSCrossRefGoogle Scholar
  8. [8]
    L. Damjanovic, G. D. Stucky and V. I. Srdanov, J. Serb. Chem. Soc. 65, 311 (2000); H. Tou, Y. Maniwa, K. Mizoguchi, L. Damjanovic and V. I. Srdanov, J. Magn. Magn. Mater. 226–230, 1098 (2001); M. Igarashi, T. Nakano, A. Goto, K. Hashi, T. Shimizu, A. Hanazawa and Y. Nozue, J. Phys. Chem. Solids 71, 638 (2010).Google Scholar
  9. [9]
    T. Nakano, R. Suehiro, A. Hanazawa, K. Watanabe, I. Watanabe, A. Amato, F. L. Pratt and Y. Nozue, J. Phys. Soc. Jpn. 79, 073707 (2010).ADSCrossRefGoogle Scholar
  10. [10]
    G. K. H. Madsen, B. B. Iversen, P. Blaha and K. Schwarz, Phys. Rev. B 64, 195102 (2001).ADSCrossRefGoogle Scholar
  11. [11]
    K. Nakamura, T. Koretsune and R. Arita, Phys. Rev. B 80, 174420 (2009).ADSCrossRefGoogle Scholar
  12. [12]
    T. Nakano, T. Kashiwagi, A. Hanazawa, K. Watanabe, M. Hagiwara and Y. Nozue, J. Phys. Soc. Jpn. 78, 084723 (2009).ADSCrossRefGoogle Scholar
  13. [13]
    T. Kashiwagi, T. Nakano, A. Hanazawa, Y. Nozue and M. Hagiwara, J. Phys. Chem. Solids 71, 544 (2010).ADSCrossRefGoogle Scholar
  14. [14]
    T. Moriya and H. Hasegawa, J. Phys. Soc. Jpn. 48, 1490 (1980).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2013

Authors and Affiliations

  • Takehito Nakano
    • 1
    Email author
  • Yuko Ishida
    • 1
  • Atsufumi Hanazawa
    • 1
  • Yasuo Nozue
    • 1
  1. 1.Department of Physics, Graduate School of ScienceOsaka UniversityToyonaka, OsakaJapan

Personalised recommendations