Journal of the Korean Physical Society

, Volume 62, Issue 10, pp 1572–1574 | Cite as

Anomalous increase of T C in UGa2 under pressure

  • Alexandre Kolomiets
  • Ladislav Havela
  • Jiří Prchal
  • Alexander V. Andreev


UGa2 is 5f ferromagnet with T C = 126 K. High-pressure study of a single crystal exhibits a dramatic increase of T C without any sign of saturation, reaching 155 K at p = 7 GPa, corresponding to +4 K/GPa. Such effect can be understood assuming a weak 5f delocalization and an exchange interaction driven by the hybridization with non-f states, which is strengthened under pressure.


Uranium Ferromagnetism High pressure Hybridization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V. Sechovský, L. Havela, in: Ferromagnetic Materials — A Handbook on the Properties of Magnetically ordered Substances, edited by E. P. Wohlfarth and K. H. J. Buschow (North-Holland, Amsterdam, 1988), Vol. 4, p. 309.Google Scholar
  2. [2]
    V. Ansorge and A. Menovsky, Phys. Stat. Sol. 30, K31 (1968).ADSCrossRefGoogle Scholar
  3. [3]
    V. Sechovsky, Z. Smetana and A. Menovsky, Phys. Stat. Sol. A 28, K37 (1975).ADSCrossRefGoogle Scholar
  4. [4]
    T. Honma, Y. Inada, R. Settai, S. Araki, Y. Tokiwa, T. Takeuchi, H. Sugawara, H. Sato, K. Kuwahara, M. Yokoyama, H. Amitsuka, T. Sakakibara, E. Yamamoto, Y. Haga, A. Nakamura, H. Harima, H. Yamagami and Y. Onuki, J. Phys. Soc. Japan 69, 2647 (2000).ADSCrossRefGoogle Scholar
  5. [5]
    T. Gouder, L. Havela, M. Diviš, J. Rebizant, P. M. Oppeneer and M. Richter,, J. Alloys Comp. 314, 7 (2001).CrossRefGoogle Scholar
  6. [6]
    L. Havela, A.V. Kolomiets, V. Sechovský, P. Javorský, T.D. Cuong, J. Kamarád, N. Sato, Acta Phys. Slov. 48, 803 (1998).Google Scholar
  7. [7]
    A. V. Kolomiets, L. Havela, V. Sechovský, P. Javorský, J. Kamarád, N. Sato and T. D. Cuong, Physica B 259, 238 (1999).ADSCrossRefGoogle Scholar
  8. [8]
    J. Prchal L. Havela and A.V. Andreev, High Pressure Research 32, 208 (2012).Google Scholar
  9. [9]
    M. Diviš, M. Richter, H. Eschrig and L. Steinbeck,, Phys. Rev. 53, 9658 (1996).ADSCrossRefGoogle Scholar
  10. [10]
    R. J. Radwanski and N. H. Kim-Ngan, J. Magn. Magn. Mater. 140–144, 1373 (1995).CrossRefGoogle Scholar
  11. [11]
    L. Havela, V. Sechovský, F. R. de Boer, E. Brück and H. Nakotte, Physica B 177, 159 (1992).ADSCrossRefGoogle Scholar
  12. [12]
    T.-H. Tsai and D. J. Sellmyer, Phys. Rev. B 20, 4577 (1979).ADSCrossRefGoogle Scholar
  13. [13]
    N. R. Sanjay Kumar, N. Subramanian, N. V. Chandra Shekar, M. Sekar and P.Ch. Sahu, Phil. Mag. Letters 84, 791 (2004).ADSCrossRefGoogle Scholar
  14. [14]
    P. Link, U. Benedict, J. Wittig and H. Wühl, J. Phys.: Cond. Matter. 4, 5585 (1992).ADSCrossRefGoogle Scholar
  15. [15]
    V. Sechovský, F. Honda, K. Prokeš, J.-C. Griveau, A. V. Andreev, Z. Arnold, J. Kamarád and G. Oomi,, J. Magn. Magn. Mater. 290–291, 629 (2005).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2013

Authors and Affiliations

  • Alexandre Kolomiets
    • 1
    • 2
  • Ladislav Havela
    • 1
  • Jiří Prchal
    • 1
  • Alexander V. Andreev
    • 3
  1. 1.Department of Condensed Matter PhysicsCharles UniversityPrague 2The Czech Republic
  2. 2.Department of PhysicsLviv Polytechnic National UniversityLvivUkraine
  3. 3.Institute of PhysicsASCRPrague 8The Czech Republic

Personalised recommendations