Journal of the Korean Physical Society

, Volume 62, Issue 10, pp 1534–1538 | Cite as

Current-driven domain wall motion in artificial magnetic domain structures

  • M. Hari
  • K. Wang
  • S. J. Bending
  • E. Arac
  • D. Atkinson
  • S. Lepadatu
  • J. S. Claydon
  • C. H. Marrows
Article

Abstract

We report progress towards optimisation of artificial magnetic domain structures for efficient spin transfer torque domain wall (DW) motion. Co/Pt multilayer samples have been sputtered on (100) Si/SiO2 substrates and perpendicular magnetic anisotropy confirmed using polar magneto-optical Kerr effect (MOKE) measurements. The influence of the thickness of Co and Pt layers on the coercivity and switching behaviour was systematically investigated and the conditions established for realising well-suited structures with medium coercivity (∼100 Oe) and sharp switching fields. Optimised Co/Pt multilayer films have been lithographically patterned into nanowire devices for time-resolved extraordinary Hall effect (EHE) measurements. Our devices are based on 50 Ω coplanar waveguides incorporating single and double Hall cross structures. The coercivity of the region surrounding the Co/Pt Hall crosses was reduced by local focussed ion beam (FIB) irradiation allowing the controlled nucleation of domain walls at the edges of these regions by application of an appropriate field sequence. We describe polar MOKE experiments that show how DC currents lead to asymmetric switching of these artificial domains due to current-assisted DW motion across them.

Keywords

Domain wall motion Coercivity control Extraordinary hall effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. S. P. Parkin, US Patents Nos. 6.834.005, 6.898.132,6.920.062, 7.031.178 & 7.236.386 (2004–2007).Google Scholar
  2. [2]
    Hayashi et al., PRL 96, 197207 (2006).ADSCrossRefGoogle Scholar
  3. [3]
    Hayashi et al., PRL 97, 207205 (2006).ADSCrossRefGoogle Scholar
  4. [4]
    Thomas et al., Nature 443, 197 (2006).ADSCrossRefGoogle Scholar
  5. [5]
    Hayashi et al., Nature Physics 3, 21 (2007).ADSCrossRefGoogle Scholar
  6. [6]
    Hayashi et al., PRL 98, 037204 (2007).ADSCrossRefGoogle Scholar
  7. [7]
    S. Hashimoto et al., J. Appl. Phys. 67, 4429 (1990).ADSCrossRefGoogle Scholar
  8. [8]
    C. Chappert et al., Science 280, 1919 (1998).ADSCrossRefGoogle Scholar
  9. [9]
    T. Devolder et al., Appl. Phys. Lett. 74, 3383 (1999).ADSCrossRefGoogle Scholar
  10. [10]
    J. Fassbender et al., J. Phys D: Appl. Phys. 37, R179 (2004).ADSCrossRefGoogle Scholar
  11. [11]
    S. Hashimoto et al., J. Appl. Phys. 67, 4429 (1990).ADSCrossRefGoogle Scholar
  12. [12]
    C. Chappert et al., Science 280, 1919 (1998).ADSCrossRefGoogle Scholar
  13. [13]
    T. Devolder et al., Appl. Phys. Lett. 74, 3383 (1999).ADSCrossRefGoogle Scholar
  14. [14]
    C. Vieu, J. Gierak, H. Launois, T. Aign, P. Meyer, J. P. Jamet, J. Ferre, C. Chappert, T. Devolder, V. Mathet and H. Bernas, J. Appl. Phys. 91, 3103 (2002).ADSCrossRefGoogle Scholar
  15. [15]
    K. Wang, M.-C. Wu, S. Lepadatu, J. S. Claydon, C. H. Marrows and S. J. Bending, J. Appl. Phys. 110, 083913 (2011).ADSCrossRefGoogle Scholar
  16. [16]
    A. Aziz, S. J. Bending, H. Roberts, S. Crampin, P. J. Heard and C. H. Marrows, J. Appl. Phys. 98, 124102 (2005).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2013

Authors and Affiliations

  • M. Hari
    • 1
  • K. Wang
    • 1
  • S. J. Bending
    • 1
  • E. Arac
    • 2
  • D. Atkinson
    • 2
  • S. Lepadatu
    • 3
  • J. S. Claydon
    • 3
  • C. H. Marrows
    • 3
  1. 1.Department of PhysicsUniversity of BathClaverton Down, BathUK
  2. 2.Department of PhysicsDurham UniversityDurhamUK
  3. 3.School of Physics and AstronomyUniversity of LeedsLeedsUK

Personalised recommendations