Journal of the Korean Physical Society

, Volume 62, Issue 10, pp 1489–1494 | Cite as

Electronic phase separation due to magnetic polaron formation in the semimetallic ferromagnet EuB6 — A weakly-nonlinear-transport study

  • Adham Amyan
  • Pintu Das
  • Jens Müller
  • Zachary Fisk
Article
  • 80 Downloads

Abstract

We report measurements of weakly nonlinear electronic transport, as measured by third-harmonic voltage generation V, in the low-carrier density semimetallic ferromagnet EuB6, which exhibits an unusual magnetic ordering with two consecutive transitions at \(T_{c_1 } \) = 15.6K and \(T_{c_2 } \) = 12.5K. In contrast to the linear resistivity, the third-harmonic voltage is sensitive to the microgeometry of the electronic system. Our measurements provide evidence for magnetically-driven electronic phase separation consistent with the picture of percolation of magnetic polarons (MP), which form highly conducting magnetically ordered clusters in a paramagnetic and less conducting background. Upon cooling in zero magnetic field through the ferromagnetic transition, the dramatic drop in the linear resistivity at the upper transition \(T_{c_1 } \) coincides with the onset of nonlinearity, and upon further cooling is followed by a pronounced peak in V at the lower transition \(T_{c_2 } \). Likewise, in the paramagnetic regime, a drop of the material’s magnetoresistance R(H) precedes a magnetic-fieldinduced peak in nonlinear transport. A striking observation is a linear temperature dependence of Vpeak. We suggest a picture where at the upper transition \(T_{c_1 } \) the coalescing MP form a conducting path giving rise to a strong decrease in the resistance. The MP formation sets in at around T* ∼ 35K below which these entities are isolated and strongly fluctuating, while growing in number. The MP then start to form links at \(T_{c_1 } \), where percolative electronic transport is observed. The MP merge and start forming a continuum at the threshold \(T_{c_2 } \). In the paramagnetic temperature regime \(T_{c_1 } \) < T < T*, MP percolation is induced by a magnetic field, and the threshold accompanied by charge carrier delocalization occurs at a single critical magnetization.

Keywords

Colossal magnetoresistance Magnetic polarons Electronic phase separation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Degiorgi, E. Felder, H. R. Ott, J. L. Sarrao and Z. Fisk, Phys. Rev. Lett. 79, 5134 (1997).ADSCrossRefGoogle Scholar
  2. [2]
    J. C. Cooley, M. C. Aronson, J. L. Sarrao and Z. Fisk, Phys. Rev. B 56,14541 (1997).ADSCrossRefGoogle Scholar
  3. [3]
    P. Majumdar and P. Littlewood, Phys. Rev. Lett. 81, 1314 (1998).ADSCrossRefGoogle Scholar
  4. [4]
    J. M. De Teresa, M. R. Ibarra, P. A. Igarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A. del Moral and Z. Arnold, Nature 386, 256 (1997).ADSCrossRefGoogle Scholar
  5. [5]
    P. Nyhus, S. Yoon, M. Kauffman, S. L. Cooper, Z. Fisk and J. Sarrao, Phys. Rev. B 56, 2717 (1997).ADSCrossRefGoogle Scholar
  6. [6]
    S. Süllow, I. Prasad, M. C. Aronson, S. Bogdanovich, J. L. Sarrao and Z. Fisk, Phys. Rev. B 62, 11626 (2000).ADSCrossRefGoogle Scholar
  7. [7]
    T. Kasuya and A. Yanase, Rev. Mod. Phys. 40, 684 (1968).ADSCrossRefGoogle Scholar
  8. [8]
    S. von Molnár and P. A. Stampe, Hand book of Magnetism and Advanced Magnetic Materials, Vol 5, Wiley Publishers.Google Scholar
  9. [9]
    M. J. Calderón, L. G. L. Wegener and P. B. Littlewood, Phys. Rev. B 70, 092408 (2004).ADSCrossRefGoogle Scholar
  10. [10]
    J. Chatterjee, U. Yu and B. Min, Phys. Rev. B 69, 134423 (2004).ADSCrossRefGoogle Scholar
  11. [11]
    U. Yu and B. I. Min, Phys. Rev. B 74, 094413 (2006).ADSCrossRefGoogle Scholar
  12. [12]
    M. L. Brooks, T. Lancaster, S. J. Blundell, W. Hayes, F. L. Pratt and Z. Fisk, Phys. Rev. B 70, 020401(R), (2004).ADSCrossRefGoogle Scholar
  13. [13]
    P. Das et al., to be published.Google Scholar
  14. [14]
    X. Zhang, S. von Molnár, Z. Fisk and P. Xiong, Phys. Rev. Lett. 100, 167001 (2008).ADSCrossRefGoogle Scholar
  15. [15]
    X. Zhang, L. Yu, S. von Molnár, Z. Fisk and P. Xiong, Phys. Rev. Lett. 103, 106602 (2009).ADSCrossRefGoogle Scholar
  16. [16]
    V. Moshnyaga, K. Gehrke, O. I. Lebedev, L. Sudheendra, A. Belenchuk, S. Raabe, O. Shapoval, J. Verbeeck, G. Van Tendeloo and K. Samwar, Phys. Rev. B 79, 134413 (2009).ADSCrossRefGoogle Scholar
  17. [17]
    Z. Fisk et al. J. Appl. Phys. 50, 1911 (1979).ADSCrossRefGoogle Scholar
  18. [18]
    D. J. Bergman, Phys. Rev. B 39, 4598 (1989).ADSCrossRefGoogle Scholar
  19. [19]
    O. Levy and D. J. Bergman, Phys. Rev. B 50, 3652 (1994).ADSCrossRefGoogle Scholar
  20. [20]
    M. A. Dubson, Y. C. Hui, M. B. Weissman and J. C. Garland, Phys. Rev. B 39, 6807 (1989).ADSCrossRefGoogle Scholar
  21. [21]
    D. J. Bergman and S. Stroud, Physical properties of macroscopically inhomogeneous media, in: Solid State Physics 46, 147 (1992).CrossRefGoogle Scholar
  22. [22]
    Y. Yagil and G. Deutscher, Phys. Rev. B. 46, 16115 (1992).ADSCrossRefGoogle Scholar
  23. [23]
    S. Süllow, I. Prasad, M. C. Aronson, J. L. Sarrao, Z. Fisk, D. Hristova, A. H. Lacerda, M. F. Hundley, A. Vigilante and D. Gibbs, Phys. Rev. B 57, 5860 (1998).ADSCrossRefGoogle Scholar
  24. [24]
    Sh. Kogan, Electronic noise and fluctuations in solids, (Cambridge University Press, New York, 1996).CrossRefGoogle Scholar
  25. [25]
    S. Paschen, D. Pushin, M. Schlatter, P. Volanthen, H. R. Ott, D. P. Young and Z. Fisk, Phys. Rev. B 61, 4174 (2000).ADSCrossRefGoogle Scholar
  26. [26]
    Spatial extent of magnetic polarons were found to be increased by application of external magnetic fields from the observation of ferromagnetic correlation length in manganites [4]. The data also suggest a reduction of the number of polarons due to application of magnetic field.Google Scholar

Copyright information

© The Korean Physical Society 2013

Authors and Affiliations

  • Adham Amyan
    • 1
  • Pintu Das
    • 1
  • Jens Müller
    • 1
  • Zachary Fisk
    • 2
  1. 1.Institute of PhysicsGoethe-University FrankfurtFrankfurt (M)Germany
  2. 2.Department of PhysicsUniversity of CaliforniaIrvineUSA

Personalised recommendations