Journal of the Korean Physical Society

, Volume 62, Issue 10, pp 1418–1422 | Cite as

Spin excitons from hybridized heavy quasiparticles in YbB12 and CeB6

  • Alireza Akbari
  • Peter Thalmeier


In f-electron compounds the small indirect hybridization gap which is on the scale of the Kondo temperature leads to an enhanced bare spin response around the zone boundary wave vector, Q′ = (π, π, π). Due to the interaction of hybridized quasiparticles a collective spin exciton resonance mode may appear within or at the gap threshold around Q′. It was found in the small hybridization gap semiconductor YbB12 as well as in the heavy fermion metal CeB6. There are similarities to the spin excitons observed within the excitation gap of unconventional superconductors. We use an Anderson lattice type model supplemented by the molecular fields of hidden and magnetic order in the case of CeB6 to calculate the RPA spin response in these compounds. It exhibits the salient feature in frequency and momentum dependence around Q′ found by inelastic neutron scattering.


Spin excitons Heavy quasiparticles Hybridization Kondo semiconductor Hidden order 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I. Eremin, D. K. Morr, A. V. Chubukov, K. H. Bennemann and M. R. Norman, Phys. Rev. Lett. 94, 147001 (2005).ADSCrossRefGoogle Scholar
  2. [2]
    M. D. Lumsden, A. D. Christianson, D. Parshall, M. B. Stone, S. E. Nagler, G. J. MacDougall, H. A. Mook, K. Lokshin, T. Egami, D. L. Abernathy, E. A. Goremychkin, R. Osborn, M. A. McGuire, A. S. Sefat, R. Jin, B. C. Sales and D. Mandrus, Phys. Rev. Lett. 102, 107005 (2009).ADSCrossRefGoogle Scholar
  3. [3]
    D. S. Inosov, J. T. Park, P. Bourges, D. L. Sun, Y. Sidis, A. Schneidewind, K. Hradil, D. Haug, C. T. Lin, B. Keimer and V. Hinkov, Nature Physics 6, 178 (2010).ADSCrossRefGoogle Scholar
  4. [4]
    M. Korshunov and I. Eremin, Phys. Rev. B 78, 140509 (2008).ADSCrossRefGoogle Scholar
  5. [5]
    C. Stock, C. Broholm, J. Hudis, H. J. Kang and C. Petrovic, Phys. Rev. Lett. 100, 087001 (2008).ADSCrossRefGoogle Scholar
  6. [6]
    O. Stockert, J. Arndt, E. Faulhaber, C. Geibel, H. S. Jeevan, S. Kirchner, M. Loewenhaupt, K. Schmalzl, W. Schmidt, Q. Si and F. Steglich, Nature Physics 7, 119 (2011).ADSCrossRefGoogle Scholar
  7. [7]
    I. Eremin, G. Zwicknagl, P. Thalmeier and P. Fulde, Phys. Rev. Lett. 101, 187001 (2008).ADSCrossRefGoogle Scholar
  8. [8]
    K. S. Nemkovski, J.-M. Mignot, P. A. Alekseev, A. S. Ivanov, E. V. Nefeodova, A. V. Rybina, L.-P. Regnault, F. Iga and T. Takabatake, Phys. Rev. Lett. 99, 137204 (2007).ADSCrossRefGoogle Scholar
  9. [9]
    G. Friemel, Y. Li, A. Dukhnenko, N. Shitsevalova, N. Sluchanko, A. Ivanov, V. Filipov, B. Keimer and D. Inosov, Nature Communications (2012).Google Scholar
  10. [10]
    R. Shiina, H. Shiba and P. Thalmeier, J. Phys. Soc. Jpn. 66, 1741 (1997).ADSCrossRefGoogle Scholar
  11. [11]
    P. Thalmeier, R. Shiina, H. Shiba, A. Takahashi and O. Sakai, J. Phys. Soc. Jpn. 72, 3219 (2003).ADSCrossRefGoogle Scholar
  12. [12]
    A. Akbari, P. Thalmeier and P. Fulde, Phys. Rev. Lett. 102, 106402 (2009).ADSCrossRefGoogle Scholar
  13. [13]
    A. Akbari and P. Thalmeier, Phys. Rev. Lett. 108, 146403 (2012).ADSCrossRefGoogle Scholar
  14. [14]
    P. S. Riseborough, Phys. Rev. B 45, 13984 (1992).ADSCrossRefGoogle Scholar
  15. [15]
    J.-M. Mignot, P. A. Alekseev, K. S. Nemkovski, L.-P. Regnault, F. Iga and T. Takabatake, Phys. Rev. Lett. 94, 247204 (2005).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2013

Authors and Affiliations

  1. 1.Max Planck Institute for the Chemical Physics of SolidsDresdenGermany

Personalised recommendations