Journal of the Korean Physical Society

, Volume 62, Issue 7, pp 1077–1081 | Cite as

Real-space imaging of ferroelectric and structural antiphase domains in hexagonal YMnO3

  • K. Kobayashi
  • H. Kamo
  • K. Kurushima
  • Y. Horibe
  • S. -W. Cheong
  • Y. Togawa
  • S. Mori
Article

Abstract

A high-angle annular-dark-field (HAADF) imaging technique was applied to the investigation of domain wall structures in the ferroelectric phase of hexagonal manganites, YMnO3, on an atomic scale. The displacements of the Y3+ ions along the [001] direction can be clearly visualized. The ferroelectric dipole moments are revealed to be caused by the opposite and unequal displacements of Y3+ ions. Two types of domain walls should be identified in the ferroelectric domain structures. One is charged longitudinal domain walls with head-to-head or tail-to-tail configurations and the other is non-charged transverse domain walls with head-to-tail configurations. In addition, the ferroelectric and the structural antiphase domains in YMnO3 change into fragmentary domains because of substitution of Ti4+ for Mn3+, and ferroelectric nanodomains with sizes of 10–20 nm are found in the x = 0.30 compound.

Keywords

Ferroelectricity STE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. B. Van. Aken, T. Palstra, A. Filippetti and N. A. Spaldin, Nat. Mater. 3, 164 (2004).ADSCrossRefGoogle Scholar
  2. [2]
    S.-W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2004).ADSCrossRefGoogle Scholar
  3. [3]
    T. Katsufuji et al., Phys. Rev. B 66, 134434 (2002).ADSCrossRefGoogle Scholar
  4. [4]
    N. A. Spaldin and M. Fiebig, Science 309, 391 (2005).CrossRefGoogle Scholar
  5. [5]
    Th. Lonkai, D. G. Tomuta, U. Amann, J. Ihringer, R. W. A. Hendrikx, D. M. Többens and J. A. Mydosh,, Phys. Rev. B 69, 134108 (2004).ADSCrossRefGoogle Scholar
  6. [6]
    S. Lee et al., Nature 451, 805 (2008).ADSCrossRefGoogle Scholar
  7. [7]
    Q. H. Zhang et al., Phys. Rev. B 85, 020102(R) (2012).ADSGoogle Scholar
  8. [8]
    T. Choi, Y. Horibe, H. T. Yi, Y. J. Choi, W. D. Wu and S. W. Cheong, Nat. Mater. 9, 253 (2010).ADSCrossRefGoogle Scholar
  9. [9]
    J. Seidel et al., Nat. Mater. 8, 229 (2009).MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    T. Katsufuji, S. Mori, M. Masaki, Y. Moritomo, N. Yamamoto and H. Takagi, Phys. Rev. B 64, 104419 (2001).ADSCrossRefGoogle Scholar
  11. [11]
    S. Mori, J. Tokunaga, Y. Horibe, Y. Aikawa and T. Katsufuji, Phys. Rev. B 72, 224434 (2005).ADSCrossRefGoogle Scholar
  12. [12]
    T. Asaka, K. Nemoto, K. Kimoto, T. Arima and Y. Matsui, Phys. Rev. B 71, 014114 (2005).ADSCrossRefGoogle Scholar
  13. [13]
    Y. Aikawa, T. Katsufuji, T. Arima and K. Kato, Phys. Rev. B 71, 184418 (2005).ADSCrossRefGoogle Scholar
  14. [14]
    K. Kobayashi, T. Koyama, H. Kamo, Y. Togawa, Y. Horibe, S.-W. Cheong and S. Mori, J. J. Appl. Phys. 51, 09LE09 (2012).CrossRefGoogle Scholar
  15. [15]
    C. Jia, S.-B. Mi, K. Urban, I. Vrejoiu, M. Alexe and D. Hesse, Nat. Mater. 7, 57 (2008).ADSCrossRefGoogle Scholar
  16. [16]
    The detailed analysis of the domain structures and domain walls in hexagonal manganites will be reported elsewhere.Google Scholar

Copyright information

© The Korean Physical Society 2013

Authors and Affiliations

  • K. Kobayashi
    • 1
  • H. Kamo
    • 1
  • K. Kurushima
    • 2
  • Y. Horibe
    • 3
  • S. -W. Cheong
    • 3
  • Y. Togawa
    • 1
    • 4
  • S. Mori
    • 1
    • 4
  1. 1.Osaka Prefecture UniversityOsakaJapan
  2. 2.Toray Research CenterShigaJapan
  3. 3.Department of Physics and AstronomyRutgers UniversityPiscatawayUSA
  4. 4.Japan Science and Technology Agency (JST)Core Research for Evolutional Science and Technology (CREST)TokyoJapan

Personalised recommendations