Journal of the Korean Physical Society

, Volume 62, Issue 7, pp 1055–1059 | Cite as

Ferroelectric and piezoelectric properties of (K,Na)NbO3 thick films prepared on metal substrates by hydrothermal method

  • Takahisa Shiraishi
  • Hiro Einishi
  • Shintaro Yasui
  • Hiroshi Funakubo
  • Tomohito Hasegawa
  • Minoru Kurosawa
  • Mutsuo Ishikawa
  • Hiroshi Uchida
  • Yukio Sakashita
Article

Abstract

(K0.88Na0.12)NbO3 (KNN) thick films with various thicknesses were prepared on Ni-based metal substrates by hydrothermal method. Although the deposition of KNN films was hardly observed directly on metal substrates until 12 h, the amount of KNN films deposited on both SrRuO3/LaNiO3- and SrRuO3-covered Ni based metal substrates increased to about 5 µm with increasing deposition time above 3 h. X-ray diffraction studies confirmed the formation of {100}c- and randomly-oriented KNN films on SrRuO3/LaNiO3- and SrRuO3-covered metal substrates, respectively. Ferroelecctric property studies revealed an improved remanent polarization and an improved piezoelectric response of {100}c-oriented KNN films over the randomly-oriented KNN films. In addition, the values for {100}c-oriented KNN films were similar to those of {100}c-oriented epitaxial KNN films prepared on (100)cSrRuO3//SrTiO3 substrates.

Keywords

Orientation control Metal substrate Hydrothermal method Piezoelectric property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Settter et al., J. Appl. Phys. 100, 051606 (2006).ADSCrossRefGoogle Scholar
  2. [2]
    T. R. Shrout and S. J. Zhang, J. Electroceram. 19, 111 (2007).Google Scholar
  3. [3]
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya and M. Nakamura, Nature 432, 84 (2004).ADSCrossRefGoogle Scholar
  4. [4]
    T. Shiraishi, H. Einishi, S. Yasui, M. Ishikawa, T. Hasegawa, M. Kurosawa, H. Uchida, Y. Sakashita and H. Funakubo, Jpn. J. Appl. Phys. 50, 09ND11 (2011).CrossRefGoogle Scholar
  5. [5]
    Z. Wu, N. Kumagi and M. Yoshimara, Chem. Mater. 20, 3356 (2000).CrossRefGoogle Scholar
  6. [6]
    G. Suchaneck, O. Volkonskiy, Z. Hubicka, A. Dejneka, L. Jastrabik, B. Adolphi, M. Bertram and G. Gerlach, Integ. Fe 108, 57 (2009).CrossRefGoogle Scholar
  7. [7]
    S. Euphrasie, S. D. Minaud and P. Pernod, Mater. Sci. Eng., B 104, 180 (2003).CrossRefGoogle Scholar
  8. [8]
    Y. Kadota, M. Ishikawa, H. Hosaki and T. Morita, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 9 (2009).CrossRefGoogle Scholar
  9. [9]
    D. V. Taylor and D. Damjanovic, Appl. Phys. Lett. 76, 1615 (2000).ADSCrossRefGoogle Scholar
  10. [10]
    C.-S. Park, S.-W. Kim, G.-T. Park, J.-J. Choi and H.-E. Kim, J. Mater. Res. 20, 243 (2005).ADSCrossRefGoogle Scholar
  11. [11]
    M. Vite, M. Castillo, L. H. Hernandez, G. Villa, I. H. Cruz and D. Stephane, Wear 258, 70 (2005).CrossRefGoogle Scholar
  12. [12]
    E. L. Hall and C. L. Briant, Metall. Trans. A 16A, 1985 (1226).Google Scholar
  13. [13]
    H. Kuwabara, N. Menou and H. Funakubo, Appl. Phys. Lett. 90, 222901 (2007).ADSCrossRefGoogle Scholar
  14. [14]
    K. Takahashi, M. Suzuki, T. Oikawa, H. Chen and H. Funakubo, Mater. Res. Soc. Symp. Proc. 833, G.9.1 (2005).Google Scholar
  15. [15]
    M. Ishikawa, H. Einishi, M. Nakajima, T. Hasegawa, T. Morita, Y. Saijo, M. Kurosawa and H. Funakubo, Jpn. J. Appl. Phys. 49, 07HF01 1 (2010).Google Scholar
  16. [16]
    H. Einishi, M. Ishikawa, M. Nakajima, S. Yasui, T. Yamada, M. Kurosawa and H. Funakubo, Key Eng. Mater. 485, 199 (2011).CrossRefGoogle Scholar
  17. [17]
    W. L. Suchanek, Chem. Mater. 16, 1083 (2004).CrossRefGoogle Scholar
  18. [18]
    A. D. Handokov and G. K. L. Goh, Thin Solid Films 519, 5156 (2011).ADSCrossRefGoogle Scholar
  19. [19]
    K. Shimomura, T. Tsurumi, Y. Ohba and M. Daimon, Jpn. J. Appl. Phys. 30, 2174 (1991).ADSCrossRefGoogle Scholar
  20. [20]
    G. K. L. Goh, C. G. Levi. J. H. Choi and F. F. Lange, J. Cryst. Growth 286, 457 (2006).ADSCrossRefGoogle Scholar
  21. [21]
    S. Okamoto, S. Yokoyama, Y. Honda, G. Asano and H. Funakubo, Jpn. J. Appl. Phys. 43, 6567 (2004).ADSCrossRefGoogle Scholar
  22. [22]
    S. Miyake, K. Yamamoto, S. Fujihara and T. Kimura, J. Am. Ceram. Soc. 85, 992 (2002).CrossRefGoogle Scholar
  23. [23]
    H. J. Lee, I. W. Kim, J. S. Kim, C. W. Ahn and B. H. Park, Appl. Phys. Lett. 94, 092902 1 (2009).Google Scholar
  24. [24]
    Y. Nakashima, W. Sakamoto, H. Maiwa, T. Shimura and T. Yogo, Jpn. J. Appl. Phys. 46, L311 (2007).ADSCrossRefGoogle Scholar
  25. [25]
    C. W. Ahn, S. Y. Lee, H. J. Lee, A. Ullah, J. S. Bae, E. D. Jeong, J. S. Choi, B. H. Park and I. W. Kim, J. Phys. D 42, 215304 (2009).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2013

Authors and Affiliations

  • Takahisa Shiraishi
    • 1
  • Hiro Einishi
    • 1
  • Shintaro Yasui
    • 1
  • Hiroshi Funakubo
    • 1
  • Tomohito Hasegawa
    • 2
  • Minoru Kurosawa
    • 2
  • Mutsuo Ishikawa
    • 3
  • Hiroshi Uchida
    • 4
  • Yukio Sakashita
    • 5
  1. 1.Department of Innovative and Engineered MaterialsTokyo Institute of TechnologyYokohamaJapan
  2. 2.Department of Information ProcessingTokyo Institute of TechnologyYokohamaJapan
  3. 3.Department of Clinical Engineering Faculty of Biomedical EngineeringToin University of YokohamaYokohamaJapan
  4. 4.Department of Materials and Life SciencesSophia UniversityTokyoJapan
  5. 5.Frontier Core-Technology LaboratoriesFuji Film CorporationKanagawaJapan

Personalised recommendations