Advertisement

Journal of the Korean Physical Society

, Volume 61, Issue 3, pp 484–492 | Cite as

Traveling baseball players’ problem in Korea

  • Hyang Min Jeong
  • Sang-Woo Kim
  • Younguk Choi
  • Aaram J. Kim
  • Jonghyoun Eun
  • Beom Jun Kim
Research Papers

Abstract

We study the so-called traveling tournament problem (TTP) to find an optimal tournament schedule. Differently from the original TTP, in which the total travel distance of all the participants is the objective function to minimize, we instead seek to maximize the fairness of the round robin tournament schedule of the Korean Baseball League. The standard deviation of the travel distances of teams is defined as the energy function, and the Metropolis Monte-Carlo method combined with the simulated annealing technique is applied to find the ground-state configuration. The resulting tournament schedule is found to satisfy all the constraint rules set by the Korean Baseball Organization, but with drastically increased fairness in traveling distances.

Keywords

Monte-Carlo simulation Optimization Traveling salesman problem Traveling tournament problem Sports tournament Baseball league 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Gutin and A. Punnen, The Traveling Salesman Problem and Its Variations (Kluwer Academic Pub, Dordrecht, 2002), Vol. 12.zbMATHGoogle Scholar
  2. [2]
    S. Kirkpatrick, C. Gelatt, Jr and M. Vecchi, Science 220, 671 (1983).MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. [3]
    J. Lee and M. Y. Choi, Phys. Rev. E 50, R651 (1994).ADSCrossRefGoogle Scholar
  4. [4]
    R. Brady, Nature 317, 804 (1985).ADSCrossRefGoogle Scholar
  5. [5]
    M. Dorigo and T. Stüzle, Ant Colony Optimization (Bradford Books, 2004).Google Scholar
  6. [6]
    M. Dorigo and L. Gambardella, IEEE Trans. Evol. Comput. 1, 53 (1997).CrossRefGoogle Scholar
  7. [7]
    D. Briskorn, Sports Leagues Scheduling: Models, Combinatorial Properties and Optimization Algorithms (Springer Verlag, Berlin, 2008).zbMATHGoogle Scholar
  8. [8]
    G. Kendall, S. Knust, C. Ribeiro and S. Urrutia, Comput. Oper. Res. 37, 1 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    K. Easton, G. Nemhauser and M. Trick, in Principles and Practice of Constraint Programming -CP 2001 (Springer-Verlag, Berlin, 2001), p. 580.CrossRefGoogle Scholar
  10. [10]
    A. Anagnostopoulos, L. Michel, P. Hentenryck and Y. Vergados, J. Sched. 9, 177 (2006).zbMATHCrossRefGoogle Scholar
  11. [11]
    P. Chen, G. Kendall and G. Berghe, in SCIS07 (IEEE, April 1–5, 2007), p. 19.Google Scholar
  12. [12]
    M. Trick, Practice and Theory of Automated Timetabling III (Springer, 2001), p. 242.Google Scholar
  13. [13]
    A. Schaerf, Constraints 4, 43 (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    J. Rawls, A Theory of Justice (Oxford University Press, Oxford, 1999).Google Scholar
  15. [15]
    R. Dworkin, Sovereign Virtue: The Theory and Practice of Equality (Harvard University Press, Cambridge, 2002).Google Scholar
  16. [16]
    S. K. Baek, J.-K. Choi and B. J. Kim, PLoS ONE 7, e38529 (2012).ADSCrossRefGoogle Scholar
  17. [17]
    M. Newman and G. Barkema, Monte Carlo Methods in Statistical Physics (Oxford University Press, Oxford, 1999).zbMATHGoogle Scholar

Copyright information

© The Korean Physical Society 2012

Authors and Affiliations

  • Hyang Min Jeong
    • 1
  • Sang-Woo Kim
    • 2
  • Younguk Choi
    • 2
  • Aaram J. Kim
    • 3
  • Jonghyoun Eun
    • 4
  • Beom Jun Kim
    • 1
  1. 1.Department of Physics and BK21 Physics Research DivisionSungkyunkwan UniversitySuwonKorea
  2. 2.Department of PhysicsSoongsil UniversitySeoulKorea
  3. 3.Department of Physics and Astronomy and Center for Theoretical PhysicsSeoul National UniversitySeoulKorea
  4. 4.Department of Physics and AstronomyUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations