Journal of the Korean Physical Society

, Volume 61, Issue 8, pp 1187–1193 | Cite as

Szilard’s information heat engines in the deep quantum regime

  • Kang-Hwan Kim
  • Sang Wook Kim
Research Papers


We investigate Szilard’s information heat engine in the deep quantum regime. If the ground state is non-degenerate, the work extracted from the engine divided by temperature, ~S, vanishes as the temperature approaches zero, where the third law of thermodynamics manifests itself in information science. The degenerate ground state induced by the symmetry or by accident gives rise to non-zero ~S at zero temperature. Based upon these two rules, namely the third law and the degenerate ground state, we can understand the low-temperature behavior of the quantum Szilard engine in various physical situations such as an engine consisting of either bosons or fermions either with or without interactions.


Szilard engine Quantum statistical mechanics Third law of thermodynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Szilard, Z. Phys. 53, 840 (1929).ADSzbMATHCrossRefGoogle Scholar
  2. [2]
    H. S. Leff and A. F. Rex, Maxwell’s Demons 2 (IOP Publishing, Bristol, 2003).Google Scholar
  3. [3]
    L. Brillouin, J. Appl. Phys. 22, 334 (1951).MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. [4]
    R. Landauer, IBM J. Res. Dev. 5, 183 (1961).MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    C. H. Bennett, Int. J. Theor. Phys. 21, 905 (1982).CrossRefGoogle Scholar
  6. [6]
    K. Maruyama, F. Nori and V. Vedral, Rev. Mod. Phys. 81, 1 (2009).MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. [7]
    M. O. Scully, M. S. Zhubairy, G. S. Agarwal and H. Walther, Science 299, 862 (2003).ADSCrossRefGoogle Scholar
  8. [8]
    S. W. Kim and M.-S. Choi, Phys. Rev. Lett. 95, 226802 (2005); S. W. Kim and M.-S. Choi, J. Kor. Phys. Soc. 50, 337 (2007).ADSCrossRefGoogle Scholar
  9. [9]
    M. G. Raizen, A. M. Dudarev, Q. Niu and N. J. Fisch, Phys. Rev. Lett. 94, 053003 (2005).ADSCrossRefGoogle Scholar
  10. [10]
    V. Serreli, C.-F. Lee, E. R. Kay and D. A. Leigh, Nature 445, 523 (2007).ADSCrossRefGoogle Scholar
  11. [11]
    J. J. Thorn, E. A. Schoene, T. Li and D. A. Steck, Phys. Rev. Lett. 100, 240407 (2008).ADSCrossRefGoogle Scholar
  12. [12]
    G. N. Price, S. T. Bannerman, K. Viering, E. Narevicius and M. G. Raizen, Phys. Rev. Lett. 100, 093004 (2008).ADSCrossRefGoogle Scholar
  13. [13]
    S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki and M. Sano, Nat. Phys. 6, 988 (2010).CrossRefGoogle Scholar
  14. [14]
    S. W. Kim, T. Sagawa, S. De Liberato and M. Ueda, Phys. Rev. Lett. 106, 070401 (2011).ADSCrossRefGoogle Scholar
  15. [15]
    W. Nernst, Nachr. Kgl. Ges. Wiss. Gott. 1, I (1906).Google Scholar
  16. [16]
    T. Sagawa and M. Ueda, Phys. Rev. Lett. 102, 250602 (2009).ADSCrossRefGoogle Scholar
  17. [17]
    T. Sagawa and M. Ueda, Phys. Rev. Lett. 104, 090602 (2010).ADSCrossRefGoogle Scholar
  18. [18]
    K.-H. Kim and S. W. Kim, Phys. Rev. E 84, 012101 (2011).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2012

Authors and Affiliations

  1. 1.Department of PhysicsPusan National UniversityBusanKorea
  2. 2.Department of Physics EducationPusan National UniversityBusanKorea

Personalised recommendations