Chinese Journal of Mechanical Engineering

, Volume 27, Issue 5, pp 900–908 | Cite as

Topological modeling of a one stage spur gear transmission

  • Mariem Miladi ChaabaneEmail author
  • Régis Plateaux
  • Jean-Yves Choley
  • Chafik Karra
  • Alain Riviere
  • Mohamed Haddar


Finding a basis of unification for the modeling of mechatronic systems is the search subject of several works. This paper is a part of a general research designed to the application of topology as a new approach for the modeling of mechatronic systems. Particularly, the modeling of a one stage spur gear transmission using a topological approach is tackled. This approach is based on the concepts of topological collections and transformations and implemented using the MGS(modeling of general systems) language. The topological collections are used to specify the interconnection laws of the one stage spur gear transmission and the transformations are used to specify the local behavior laws of its different components. In order to validate this approach, simulation results are presented and compared with those obtained with MODELICA language using Dymola solver. Since good results are achieved, this approach might be used as a basis of unification for the modeling of mechatronic systems.


topological modeling topological collections transformations MGS language one stage spur gear 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    PLATEAUX R, PENAS O, RIVIÈRE A, et al. Need for the definition of a topological structure for the complex systems modelling(de la nécessité de l’introduction d’une structure topologique pour la modélisation des systèmes mécatroniques) [C]// 5ème congrès International Conception et Production Intégrées CPI’2007, Rabat-Maroc, Octobre 22–24, 2007.Google Scholar
  2. [2]
    BJÖRKE Ø. Manufacturing systems theory—A geometric approach to connection[M]. Trondheim-Norway: Tapir publisher, 1995.Google Scholar
  3. [3]
    KRON G. Diakoptics: The piecewise solution for large-scale system[M]. London: Macdonald, 1963.Google Scholar
  4. [4]
    KRON G. A short course in tensor analysis for electrical engineers[M]. London: Wiley; New York: Chapman & Hall, 1942.zbMATHGoogle Scholar
  5. [5]
    ROTH J P. An application of algebraic topology to numerical analysis: on the existence of a solution to the network problem[C]// Proceedings of the National Academy of Science, USA, 1955: 41(7): 518–521.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    BRANIN F H. Jr. The algebraic-topological basis for network analogies and the vector calculus[C]//Proceedings of the Symposium on Generalized Networks, Brooklyn, 1966: 453–491.Google Scholar
  7. [7]
    MODELICA. Modeling of complex physical systems[EB] [2014-02-01].
  8. [8]
    SHAI O. Combinatorial representations in structural analysis[J]. Computing in Civil Engineering, 2001, 15(3): 193–207.CrossRefGoogle Scholar
  9. [9]
    SHAI O. The Duality relation between mechanisms and trusses[J]. Mechanism and Machine Theory, 2001, 36(3): 343–369.CrossRefzbMATHGoogle Scholar
  10. [10]
    SHAI O. Transforming engineering problems through graph representations[J]. Advance Engineering Informatics, 2003, 17(2): 77–93.CrossRefGoogle Scholar
  11. [11]
    EGLI R. Cadre de travail pour la spécification de systèmes avec des chaînes sur un complexe cellulaire[D]. Montreal: University of Montreal, 2000.Google Scholar
  12. [12]
    TONTI E. A classification diagram for physical variables[EB] [2014-02-01].
  13. [13]
    PLATEAUX R. Continuité et cohérence d’une modélisation des systèmes mécatroniques basée(s) sur une structure topologique[D]. Superior Engineering Institute of Paris SUPMECA, 2011.Google Scholar
  14. [14]
    The MGS home page[EB]. [2014-02-01].
  15. [15]
    SPICHER A, MICHEL O. Declarative modeling of a neurulation-like process[J]. BioSystems, 2007, 87(2–3): 281–288.CrossRefGoogle Scholar
  16. [16]
    GIAVITTO J L, GODIN C, MICHEL O, et al. Modelling and simulation of biological processes in the context of genomics, chapter computational models for integrative and developmental biology[M]. Hermes, 2002.Google Scholar
  17. [17]
    COHEN J. Intégration des collections topologiques et des transformations dans un langage fonctionnel[D]. University of Evry Val d’Essonne, 2004.Google Scholar
  18. [18]
    SPICHER A. Transformation de collections topologiques de dimension arbitraire. Application à la modélisation de systèmes dynamiques[D]. University of Evry Val d’Essonne, 2006.Google Scholar
  19. [19]
    MILADI CHAABANE M, PLATEAUX R, CHOLEY J-Y, et al. Topological approach to solve 2D truss structure using MGS language[C]//IEEE MECATRONIC REM, France, November 21–23, 2012: 437–444.Google Scholar
  20. [20]
    MILADI CHAABANE M, PLATEAUX R, CHOLEY J-Y, et al. New topological approach for the modeling of mecatronic systems: Application for piezoelectric structures[J]. European Journal of Computational Mechanics, 2013, 22(2–4): 209–227.zbMATHGoogle Scholar
  21. [21]
    HARRIS S L. Dynamic loads on the teeth of spur gears[C]// Proceedings of the Institution of Mechanical Engineering, June, 1958: 172(1): 87–112.CrossRefGoogle Scholar
  22. [22]
    GREGORY R, HARRIS S, MUNRO R. Dynamic behaviour of spur gears[C]//Proceedings of the Institution of Mechanical Engineers, 1962: 178(8): 207–218Google Scholar
  23. [23]
    HBAIEB R, CHAARI F, FAKHFAKH T, et al. Investigation of influence of load and velocity on dynamic response of a single stage spur gear system derived by an electric motor[C]//3ième Congrès International Conception et Modélisation des Systèmes Mécaniques CMSM’2009, Hammamet-Tunisie, March 16–18, 2009.Google Scholar
  24. [24]
    VELEX P. Contribution á l’analyse du comportement dynamique de réducteurs a engrenages á axes parallèles[D]. Villeurbanne, Institut National de Sciences Appliquées de Lyon, 1988.Google Scholar

Copyright information

© Chinese Mechanical Engineering Society and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mariem Miladi Chaabane
    • 1
    • 2
    Email author
  • Régis Plateaux
    • 2
  • Jean-Yves Choley
    • 2
  • Chafik Karra
    • 1
  • Alain Riviere
    • 2
  • Mohamed Haddar
    • 1
  1. 1.Mechanical, Modeling and Manufacturing UnitNational Engineering School of Sfax(ENIS)SfaxTunisia
  2. 2.Laboratory of Engineering of the Mechanical Structures and MaterialsHigh Institute of Mechanic of Paris(SUPMECA)Saint-Ouen CedexFrance

Personalised recommendations