Advertisement

Effective microorganism substance (EM-S) reduces development and aggravation of atopic dermatitis-like skin lesions in NC/Nga mice

  • Kwang-Hyun Park
  • Seung-II Jeong
  • Ji Ye Mok
  • Jung-Keun Cho
  • Ji Min Park
  • In Hwa Jeon
  • Hyeon Soo Kim
  • and Seon Il Jang
Bioactive Meterials Article
  • 85 Downloads

Abstract

In a previous study, our group showed that the effective microorganism substance (EM-S) produced by fermentation of medicinal plants with effective microorganisms has an antiinflammatory effect on atopic dermatitis-like lesions in NC/Nga mice. However, the possible antiinflammatory effect and skin barrier function of EM-S for inflammatory cell infiltration, Interleukin-4 (IL-4) production, C-C chemokine receptor 10 (CCR10), and filaggrin (FLG) expression were not reported. Therefore, effects of EM-S on the development of atopic dermatitislike skin lesions in NC/Nga mice were evaluated. Efficacy of EM-S was judged by measurement of scratching behavior, T-cell subset infiltration, cytokine production, and FLG expression. Topical application of EM-S significantly reduced scratching behavior in NC/Nga mice caused by house dust mite antigen (Dermatophagoides farinse extract, DfE) sensitization. IL-4 production and CD4+ and CD45+ cell infiltrations were significantly reduced by EM-S. CCR10 expression was also significantly inhibited by EM-S. EM-S treatment also increased the level of FLG reduced by DfE sensitization. These results demonstrate EM-S, when applied topically, may be an effective substance for management of atopic dermatitis patients.

Key words

anti-inflammatory effects atopic dermatitis effective microorganism substance filaggrin NC/Nga mouse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aruoma OI, Deiana M, Rosa A, Casu V, Piga R, Assunta Dessì M, Ke B, Liang YF, and Higa T (2002) Assessment of the ability of the antioxidant cocktail-derived from fermentation of plants with effective microorganisms (EM-X) to modulate oxidative damage in the kidney and liver of rats in vivo: studies upon the profile of poly- and monounsaturated fatty acids. Toxicol Lett 135, 209–217.CrossRefGoogle Scholar
  2. Boguniewicz M (2004) Update on atopic dermatitis: insights into pathogenesis and new treatment paradigms. Allergy Asthma Proc 25, 279–282.Google Scholar
  3. Chui CH, Hau DK, Lau FY, Cheng GY, Wong RS, Gambari R, Kok SH, Lai KB, Teo IT, Leung TW, Higa T, Ke B, Tang JC, Fong DW, and Chan AS (2006) Apoptotic potential of the concentrated effective microorganism fermentation extract on human cancer cells. Int J Mol Med 17, 279–284.Google Scholar
  4. Datla KP, Bennett RD, Zbarsky V, Ke B, Liang YF, Higa T, Bahorun T, Aruoma OI, and Dexter DT (2004) The antioxidant drink effective microorganism-X (EM-X) pretreatment attenuates the loss of nigrostriatal dopaminergic neurons in 6-hydroxydopamine-lesion rat model of Parkinson’s disease. J Pharm Pharmacol 56, 649–654.CrossRefGoogle Scholar
  5. Deiana M, Dessi MA, Ke B, Liang YF, Higa T, Gilmour PS, Jen LS, Rahman I, and Aruoma OI (2002) The antioxidant cocktail effective microorganism X (EM-X) inhibits oxidant-induced interleukin-8 release and the peroxidation of phospholipids in vitro. Biochem Biophys Res Commun 296, 1148–1151.CrossRefGoogle Scholar
  6. Do JS, Seo HJ, Hwang JK, Kim JH, and Nam SY (2007) Effective microorganism fermentation extract (EM-X) attenuates airway hyperreactivity and inflammation through selective inhibition of the TH2 response independently of antioxidant activity. Int J Mol Med 20, 631–635.Google Scholar
  7. Dubrac S, Schmuth M, and Ebner S (2010) Atopic dermatitis: the role of Langerhans cells in disease pathogenesis. Immunol Cell Biol 88, 400–409.CrossRefGoogle Scholar
  8. Fallon PG, Sasaki T, Sandilands A, Campbell LE, Saunders SP, Mangan NE, Callanan JJ, Kawasaki H, Shiohama A, Kubo A, Sundberg JP, Presland RB, Fleckman P, Shimizu N, Kudoh J, Irvine AD, Amagai M, and McLean WH (2009) A homozygous frameshift mutation in the mouse Flg gene facilitates enhanced percutaneous allergen priming. Nat Genet 41, 602–608.CrossRefGoogle Scholar
  9. Homey B, Alenius H, Müller A, Soto H, Bowman EP, Yuan W, McEvoy L, Lauerma AI, Assmann T, Bünemann E, Lehto M, Wolff H, Yen D, Marxhausen H, To W, Sedgwick J, Ruzicka T, Lehmann P, and Zlotnik A (2002) CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat Med 8, 157–165.CrossRefGoogle Scholar
  10. Homey B, Steinhoff M, Ruzicka T, and Leung DY (2006) Cytokines and chemokines orchestrate atopic skin inflammation. J Allergy Clin Immunol 118, 178–189.CrossRefGoogle Scholar
  11. Homey B, Wang W, Soto H, Buchanan ME, Wiesenborn A, Catron D, Müller A, McClanahan TK, Dieu-Nosjean MC, Orozco R, Ruzicka T, Lehmann P, Oldham E, and Zlotnik A (2000) Cutting edge: the orphan chemokine receptor G protein-coupled receptor-2 (GPR-2, CCR10) binds the skin-associated chemokine CCL27 (CTACK/ALP/ILC). J Immunol 164, 3465–3470.Google Scholar
  12. Howell MD, Kim BE, Gao P, Grant AV, Boguniewicz M, Debenedetto A, Schneider L, Beck LA, Barnes KC, and Leung DY (2007) Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol 120, 150–155.CrossRefGoogle Scholar
  13. Kang JS, Lee K, Han SB, Ahn JM, Lee H, Han MH, Yoon YD, Yoon WK, Park SK, and Kim HM (2006) Induction of atopic eczema/dermatitis syndrome-like skin lesions by repeated topical application of a crude extract of Dermatophagoides pteronyssinus in NC/Nga mice. Int Immunopharmacol 6, 1616–1622.CrossRefGoogle Scholar
  14. Ke B, Xu Z, Ling Y, Qiu W, Xu Y, Higa T, and Aruoma OI (2009) Modulation of experimental osteoporosis in rats by the antioxidant beverage effective microorganism-X (EMX). Biomed Pharmacother 63, 114–119.CrossRefGoogle Scholar
  15. Kurahashi R, Hatano Y, and Katagiri K (2008) IL-4 suppresses the recovery of cutaneous permeability barrier functions in vivo. J Invest Dermatol 128, 1329–1331.CrossRefGoogle Scholar
  16. Leung DY (2009) Our evolving understanding of the functional role of filaggrin in atopic dermatitis. J Allergy Clin Immunol 124, 494–495.CrossRefGoogle Scholar
  17. Marenholz I, Nickel R, Rüschendorf F, Schulz F, Esparza-Gordillo J, Kerscher T, Grüber C, Lau S, Worm M, Keil T, Kurek M, Zaluga E, Wahn U, and Lee YA (2006) Filaggrin loss-of-function mutations predispose to phenotypes involved in the atopic march. J Allergy Clin Immunol 118, 866–871.CrossRefGoogle Scholar
  18. Matsuda H, Watanabe N, Geba GP, Sperl J, Tsudzuki M, Hiroi J, Matsumoto M, Ushio H, Saito S, Askenase PW, and Ra C (1997) Development of atopic dermatitis-like skin lesion with IgE hyperproduction in NC/Nga mice. Int Immunol 9, 461–466.CrossRefGoogle Scholar
  19. Mihara K, Kuratani K, Matsui T, Nakamura M, and Yokota K (2004) Vital role of the itch-scratch response in development of spontaneous dermatitis in NC/Nga mice. Br J Dermatol 151, 335–345.CrossRefGoogle Scholar
  20. Mok JY, Jeong SI, Cho JK, Choi JW, Nam SY, Chang WG, Moon BE, Park KH, and Jang SI (2010) Anti-inflammatory effects of effective microorganism fermentation substance on atopic dermatitis-like NC/Nga mouse model. Korean J Orien Physiol Phathol 24, 258–265.Google Scholar
  21. Morales J, Homey B, Vicari AP, Hudak S, Oldham E, Hedrick J, Orozco R, Copeland NG, Jenkins NA, McEvoy LM, and Zlotnik A (1999) CTACK, a skin-associated chemokine that preferentially attracts skin-homing memory T cells. Proc Natl Acad Sci USA 96, 14470–14475.CrossRefGoogle Scholar
  22. Nakazato J, Kishida M, Kuroiwa R, Fujiwara J, Shimoda M, and Shinomiya N (2008) Serum levels of Th2 chemokines, CCL17, CCL22, and CCL27, were the important markers of severity in infantile atopic dermatitis. Pediatr Allergy Immunol 19, 605–613.Google Scholar
  23. Noh SU, Cho EA, Kim HO, and Park YM (2008) Epigallocatechin-3-gallate improves Dermatophagoides pteronissinus extract-induced atopic dermatitis-like skin lesions in NC/Nga mice by suppressing macrophage migration inhibitory factor. Int Immunopharmacol 8, 1172–1182.CrossRefGoogle Scholar
  24. Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, Darst MA, Gao B, Boguniewicz M, Travers JB, and Leung DY (2003) Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol 171, 3262–3269.Google Scholar
  25. Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, Goudie DR, Sandilands A, Campbell LE, Smith FJ, O’Regan GM, Watson RM, Cecil JE, Bale SJ, Compton JG, DiGiovanna JJ, Fleckman P, Lewis-Jones S, Arseculeratne G, Sergeant A, Munro CS, El Houate B, McElreavey K, Halkjaer LB, Bisgaard H, Mukhopadhyay S, and McLean WH (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38, 441–446.CrossRefGoogle Scholar
  26. Simpson EL (2010) Atopic dermatitis: a review of topical treatment options. Curr Med Res Opin 26, 633–640.CrossRefGoogle Scholar
  27. Soler D, Humphreys TL, Spinola SM, and Campbell JJ (2003) CCR4 versus CCR10 in human cutaneous Th lymphocyte trafficking. Blood 101, 1677–1682.dt]ArticleCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Kwang-Hyun Park
    • 1
  • Seung-II Jeong
    • 2
  • Ji Ye Mok
    • 3
  • Jung-Keun Cho
    • 4
  • Ji Min Park
    • 4
  • In Hwa Jeon
    • 4
  • Hyeon Soo Kim
    • 4
  • and Seon Il Jang
    • 3
    • 4
  1. 1.Department of BiochemistryChonbuk National University Medical SchoolJeonjuRepublic of Korea
  2. 2.Jeonju Biomaterials InstituteJeonjuRepublic of Korea
  3. 3.Jeonju University Atopy & Health Research InstituteJeonjuRepublic of Korea
  4. 4.School of Alternative Medicine & Health Science, College of Alternative MedicineJeonju UniversityJeonjuRepublic of Korea

Personalised recommendations