Skip to main content
Log in

Construction of coding region enriched genomic library by S1 nuclease treatment of partially denatured rice genomic DNA

  • Article
  • Published:
Journal of the Korean Society for Applied Biological Chemistry Submit manuscript

Abstract

Designing high density DNA arrays representing all the genes of an organism could be limited when the entire genome sequence of the organism is not available or if only a limited number of ESTs are available. In an effort to prepare coding sequences as DNA sources for a microarray, we found that coding region enriched genomic DNA libraries can be produced by S1 nuclease treatment of partially denatured genomic DNA. Sequence analysis of about 1,000 clones using BLASTN and BLASTX searches showed that 46% of the clones in the library have regions which share significant similarity with sequences deposited in the rice EST and nr data bases. These data suggested that clones produced in this library could be directly used as PCR templates, where the resulting PCR products could be spotted on slides for microarray analysis. This technique might be applicable in designing a high density DNA array for an organism whose entire genome sequence is not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BLAST:

basic local alignment search tool

EST:

expressed sequence tags

LTR:

long terminal repeat

SNP:

single nucleotide polymorphism

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, and Lipman DJ (1997) Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402

    Article  CAS  Google Scholar 

  • Altshuler D, Pollara VJ, Cowles CR, Van Etten WJ, Baldwin J, Linton L, and Lander ES (2000) An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407, 513–516.

    Article  CAS  Google Scholar 

  • Ashikawa I (2001) Geneassociated CpG islands in plants as revealed by analyses of senomic sequences. Plant J 26, 617–625.

    Article  CAS  Google Scholar 

  • Britten RJ and Kohne DE (1968) Repeated sequences in DNA. Science 161, 529–540.

    Article  CAS  Google Scholar 

  • Derisi JL, Iyer VR, and Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686.

    Article  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100.

    Article  CAS  Google Scholar 

  • Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, and Kay SA (2000) Orchestrated transcription of key pathways in Aradidopsis by the circadian clock. Science 290, 2110–2113.

    Article  CAS  Google Scholar 

  • Hashem VI, Klysik EA, Rosche WA, and Sinden RR (2002) Instability of repeated DNAs during transformation in Escherichia coli. Mutat Res 502, 3946.

    Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436, 793–800.

    Article  Google Scholar 

  • Jelinsky SA and Samson LD (1999) Global response of Saccharomyces cerevisiae to an alkylating agent. Proc Natl Acad Sci USA 96, 1486–1491.

    Article  CAS  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, and Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13, 889–905.

    Article  CAS  Google Scholar 

  • McCutchan TF, Hansen JL, Dame JB, and Mullins JA (1984) Mung bean nuclease cleaves Plasmodium genomic DNA at sites before and after genes. Science 225, 625–628.

    Article  CAS  Google Scholar 

  • McDonald MJ and Rosbash M (2001) Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107, 567–578.

    Article  CAS  Google Scholar 

  • Negishi T, Nakanishi H, Yazaki J, Kishimoto N, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T, Kikuchi S, Mori S, and Nishizawa NK (2002) cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant J 30, 83–94.

    Article  CAS  Google Scholar 

  • Pennisi E (2001) The human genome. Science 291, 1177–1180.

    Article  CAS  Google Scholar 

  • Peterson DG, Schulze SR, Sciara EB, Lee SA, Bowers JE, Nagel A, Jiang N, Tibbitts DC, Wessler SR, and Paterson AH (2002) Integration of Cot analysis, DAN cloning, and highthroughput sequencing facilitates genome characterization and gene discovery. Genome Res 12, 795–807.

    Article  CAS  Google Scholar 

  • Reddy GR, Chakrabarti D, Schuster SM, Ferl RJ, Almira EC, and Dame JB (1993) Gene sequence tags from Plasmodium falciparum genomic DNA fragments prepared by the “genease” activity of mung bean nuclease. Proc Natl Acad Sci USA 90, 9867–9871.

    Article  CAS  Google Scholar 

  • Shchyolkina AK, Borisova OF, Livshits MA, Pozmogova GE, Chernov BK, Klement R, and Jovin TM (2000) Parallelstranded DNA with mixed AT/GC composition: role of trans G.C base pairs in sequence dependent helical stability. Biochem 39, 10034–10044.

    Article  CAS  Google Scholar 

  • Shure M, Wessler S, and Fedoroff N (1983) Molecular identification and isolation of the waxy locus in maize. Cell 35, 225–233.

    Article  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Article  Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, et al. (2001) The sequence of the human genome. Science 291, 1304–1350.

    Article  CAS  Google Scholar 

  • Wheeler DL, Chappey C, Lash AE, Leipe DD, Madden TL, Schuler GD, Tatusova TA, and Rapp BA (2000) Database resources of the national center for biotechnology information. Nucleic Acids Res 28, 1014.

    Article  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GKS, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. Indica). Science 296, 79–92.

    Article  CAS  Google Scholar 

  • Yuan Q, Quackenbush J, Sultana R, Pertea M, Salzberg SL, and Buell CR (2001) Rice bioinformatics. Analysis of rice sequence data and leveraging the data to other plant species. Plant Physiol 125, 1166–1174.

    Article  CAS  Google Scholar 

  • Zirlinger M, Kreiman G, and Anderson DJ (2001) Amygdalaenriched genes identified by microarray technology are restricted to specific amygdaloid subnuclei. Proc Natl Acad Sci USA 98, 5270–5275.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Ik Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YK., Kim, JS., Cheong, PJ. et al. Construction of coding region enriched genomic library by S1 nuclease treatment of partially denatured rice genomic DNA. J. Korean Soc. Appl. Biol. Chem. 52, 213–220 (2009). https://doi.org/10.3839/jksabc.2009.039

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3839/jksabc.2009.039

Key words

Navigation