Abstract
Automated speech and language analysis (ASLA) is a promising approach for capturing early markers of neurodegenerative diseases. However, its potential remains underexploited in research and translational settings, partly due to the lack of a unified tool for data collection, encryption, processing, download, and visualization. Here we introduce the Toolkit to Examine Lifelike Language (TELL) v.1.0.0, a web-based app designed to bridge such a gap. First, we outline general aspects of its development. Second, we list the steps to access and use the app. Third, we specify its data collection protocol, including a linguistic profile survey and 11 audio recording tasks. Fourth, we describe the outputs the app generates for researchers (downloadable files) and for clinicians (real-time metrics). Fifth, we survey published findings obtained through its tasks and metrics. Sixth, we refer to TELL’s current limitations and prospects for expansion. Overall, with its current and planned features, TELL aims to facilitate ASLA for research and clinical aims in the neurodegeneration arena. A demo version can be accessed here: https://demo.sci.tellapp.org/.
This is a preview of subscription content, access via your institution.







References
Agurto, C., Pietrowicz, M., Norel, R., Eyigoz, E. K., Stanislawski, E., Cecchi, G., & Corcoran, C. (2020). Analyzing acoustic and prosodic fluctuations in free speech to predict psychosis onset in high-risk youths. Annu Int Conf IEEE Eng Med Biol Soc, 2020, 5575–5579. https://doi.org/10.1109/embc44109.2020.9176841
Ahmed, S., Haigh, A. M., de Jager, C. A., & Garrard, P. (2013). Connected speech as a marker of disease progression in autopsy-proven Alzheimer’s disease. Brain, 136(Pt 12), 3727–3737. https://doi.org/10.1093/brain/awt269
Al-Hameed, S., Benaissa, M., Christensen, H., Mirheidari, B., Blackburn, D., & Reuber, M. (2019). A new diagnostic approach for the identification of patients with neurodegenerative cognitive complaints. PLOS ONE, 14(5), e0217388. https://doi.org/10.1371/journal.pone.0217388
Association, Alzheimer’s. (2021). 2021 Alzheimer’s disease facts and figures. Alzheimers Dement, 17(3), 327–406. https://doi.org/10.1002/alz.12328
Arias-Vergara, T., Vasquez-Correa, J.C., Gollwitzer, S., Orozco-Arroyave, J.R., Schuster, M., Nöth, E. (2019). Multi-channel convolutional neural networks for automatic detection of speech deficits in cochlear implant users. In Nyström, I., Hernández Heredia, Y., Milián Núñez, V. (eds.), Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2019. Lecture Notes in Computer Science, 11896. Springer, Cham. https://doi.org/10.1007/978-3-030-33904-3_64
Ash, S., Evans, E., O'Shea, J., Powers, J., Boller, A., Weinberg, D., . . . Grossman, M. (2013). Differentiating primary progressive aphasias in a brief sample of connected speech. Neurology, 81(4), 329-336. https://doi.org/10.1212/WNL.0b013e31829c5d0e
Ash, S., Nevler, N., Phillips, J., Irwin, D. J., McMillan, C. T., Rascovsky, K., & Grossman, M. (2019). A longitudinal study of speech production in primary progressive aphasia and behavioral variant frontotemporal dementia. Brain Lang, 194, 46–57. https://doi.org/10.1016/j.bandl.2019.04.006
Ballard, K. J., Savage, S., Leyton, C. E., Vogel, A. P., Hornberger, M., & Hodges, J. R. (2014). Logopenic and Nonfluent Variants of Primary Progressive Aphasia Are Differentiated by Acoustic Measures of Speech Production. PLOS ONE, 9(2), e89864. https://doi.org/10.1371/journal.pone.0089864
Bedi, G., Carrillo, F., Cecchi, G. A., Slezak, D. F., Sigman, M., Mota, N. B., . . . Corcoran, C. M. (2015). Automated analysis of free speech predicts psychosis onset in high-risk youths. npj Schizophrenia, 1(1), 15030. https://doi.org/10.1038/npjschz.2015.30
Bedi, G., Cecchi, G. A., Slezak, D. F., Carrillo, F., Sigman, M., & de Wit, H. (2014). A window into the intoxicated mind? Speech as an index of psychoactive drug effects. Neuropsychopharmacology, 39(10), 2340–2348. https://doi.org/10.1038/npp.2014.80
Boschi, V., Catricalà , E., Consonni, M., Chesi, C., Moro, A., & Cappa, S. F. (2017). Connected speech in neurodegenerative language disorders: A Review. Frontiers in Psychology, 8(269). https://doi.org/10.3389/fpsyg.2017.00269
Bowen, L. K., Hands, G. L., Pradhan, S., & Stepp, C. E. (2013). Effects of Parkinson’s disease on fundamental frequency variability in running speech. J Med Speech Lang Pathol, 21(3), 235–244.
Bredin, H., Yin, R., Coria, J. M., Gelly, G., Korshunov, P., Lavechin, M., . . . Gill, M. P. (2020). Pyannote.Audio: Neural Building Blocks for Speaker Diarization. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain.
Busquet, F., Efthymiou, F., & Hildebrand, C. (2023). Voice analytics in the wild: Validity and predictive accuracy of common audio-recording devices. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02139-9
Carrillo, F., Sigman, M., Fernández Slezak, D., Ashton, P., Fitzgerald, L., Stroud, J., . . . Carhart-Harris, R. L. (2018). Natural speech algorithm applied to baseline interview data can predict which patients will respond to psilocybin for treatment-resistant depression. J Affect Disord, 230, 84-86. https://doi.org/10.1016/j.jad.2018.01.006
Chávez-Fumagalli, M. A., Shrivastava, P., Aguilar-Pineda, J. A., Nieto-Montesinos, R., Del-Carpio, G. D., Peralta-Mestas, A., . . . Lino Cardenas, C. L. (2021). Diagnosis of Alzheimer's disease in developed and developing countries: Systematic review and meta-analysis of diagnostic test accuracy. J Alzheimers Dis Rep, 5(1), 15-30. https://doi.org/10.3233/adr-200263
Cheng, S. T. (2017). Dementia Caregiver Burden: A Research Update and Critical Analysis. Curr Psychiatry Rep, 19(9), 64. https://doi.org/10.1007/s11920-017-0818-2
Cho, S., Nevler, N., Ash, S., Shellikeri, S., Irwin, D. J., Massimo, L., . . . Liberman, M. (2021a). Automated analysis of lexical features in frontotemporal degeneration. Cortex, 137, 215-231. https://doi.org/10.1016/j.cortex.2021.01.012
Cho, S., Shellikeri, S., Ash, S., Liberman, M. Y., Grossman, M., Nevler, N., & Nevler, N. (2021b). Automatic classification of AD versus FTLD pathology using speech analysis in a biologically confirmed cohort. Alzheimer's & Dementia, 17(S5), e052270. https://doi.org/10.1002/alz.052270
Cordella, C., Quimby, M., Touroutoglou, A., Brickhouse, M., Dickerson, B. C., & Green, J. R. (2019). Quantification of motor speech impairment and its anatomic basis in primary progressive aphasia. Neurology, 92(17), e1992–e2004. https://doi.org/10.1212/wnl.0000000000007367
Cox, R. V., Neto, S. F. D. C., Lamblin, C., & Sherif, M. H. (2009). ITU-T coders for wideband, superwideband, and fullband speech communication. IEEE Communications Magazine, 47(10), 106–109. https://doi.org/10.1109/MCOM.2009.5273816
Cummings, J., Lee, G., Ritter, A., Sabbagh, M., & Zhong, K. (2020). Alzheimer's disease drug development pipeline: 2020. Alzheimer's & Dementia: Translational Research & Clinical Interventions, 6(1), e12050. https://doi.org/10.1002/trc2.12050
de la Fuente GarcÃa, S., Ritchie, C. W., & Luz, S. (2020). Artificial intelligence, speech, and language processing approaches to monitoring Alzheimer’s disease: A systematic review. Journal of Alzheimer’s Disease, 78, 1547–1574. https://doi.org/10.3233/JAD-200888
Dodge, H. H., Mattek, N., Gregor, M., Bowman, M., Seelye, A., Ybarra, O., . . . Kaye, J. A. (2015). Social markers of mild cognitive impairment: Proportion of word counts in free conversational speech. Curr Alzheimer Res, 12(6), 513-519. https://doi.org/10.2174/1567205012666150530201917
Dorsey, E. R., Elbaz, A., Nichols, E., Abd-Allah, F., Abdelalim, A., Adsuar, J. C., . . . Murray, C. J. L. (2018). Global, regional, and national burden of Parkinson's disease, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 17(11), 939-953. https://doi.org/10.1016/S1474-4422(18)30295-3
Dubois, B., Padovani, A., Scheltens, P., Rossi, A., & Dell’Agnello, G. (2016). Timely diagnosis for Alzheimer’s disease: A literature review on benefits and challenges. Journal of Alzheimer’s Disease, 49, 617–631. https://doi.org/10.3233/JAD-150692
Ellis, C., Holt, Y. F., & West, T. (2015). Lexical diversity in Parkinson’s disease. Journal of Clinical Movement Disorders, 2(1), 5. https://doi.org/10.1186/s40734-015-0017-4
Eyben, F., Wöllmer, M., & Schuller, B. (2010). Opensmile: The munich versatile and fast open-source audio feature extractor. Proceedings of the 18th ACM international conference on Multimedia, Firenze, Italy. https://doi.org/10.1145/1873951.1874246
Eyigoz, E., Courson, M., Sedeño, L., Rogg, K., Orozco-Arroyave, J. R., Nöth, E., . . . GarcÃa, A. M. (2020a). From discourse to pathology: Automatic identification of Parkinson's disease patients via morphological measures across three languages. Cortex, 132, 191-205. https://doi.org/10.1016/j.cortex.2020.08.020
Eyigoz, E., Mathur, S., Santamaria, M., Cecchi, G., & Naylor, M. (2020b). Linguistic markers predict onset of Alzheimer's disease. eClinicalMedicine. https://doi.org/10.1016/j.eclinm.2020.100583
Faroqi-Shah, Y., Sampson, M., Pranger, M., & Baughman, S. (2018). Cognitive control, word retrieval and bilingual aphasia: Is there a relationship? Journal of Neurolinguistics, 45, 95-109. https://doi.org/10.1016/j.jneuroling.2016.07.001
Faroqi-Shah, Y., Treanor, A., Ratner, N. B., Ficek, B., Webster, K., & Tsapkini, K. (2020). Using narratives in differential diagnosis of neurodegenerative syndromes. Journal of Communication Disorders, 85, 105994. https://doi.org/10.1016/j.jcomdis.2020.105994
Favaro, A., Moro-Velázquez, L., Butala, A., Motley, C., Cao, T., Stevens, R. D., . . . Dehak, N. (2023). Multilingual evaluation of interpretable biomarkers to represent language and speech patterns in Parkinson's disease. Frontiers in Neurology, 14, 1142642. https://doi.org/10.3389/fneur.2023.1142642
Ferrante, F. J., Migeot, J. A., Birba, A., Amoruso, L., Pérez, G., Hesse, E., Tagliazucchi, E., Estienne, C., Serrano, C., Slachevsky, A., Matallana, D., Reyes, P., Ibáñez, A., Fittipaldi, S., González Campo, C. & GarcÃa, A. M. (accepted). Multivariate word properties in fluency tasks reveal markers of Alzheimer’s dementia. Alzheimer’s & Dementia.
Fraser, K. C., Lundholm Fors, K., Eckerström, M., Öhman, F., & Kokkinakis, D. (2019). Predicting MCI status from multimodal language data using cascaded classifiers. Frontiers in Aging Neuroscience, 11, 205–205. https://doi.org/10.3389/fnagi.2019.00205
Fraser, K. C., Meltzer, J. A., & Rudzicz, F. (2016). Linguistic features identify Alzheimer’s disease in narrative speech. Journal of Alzheimer’s Disease, 49(2), 407–422. https://doi.org/10.3233/jad-150520
Fraser, K. C., Meltzer, J. A., Graham, N. L., Leonard, C., Hirst, G., Black, S. E., & Rochon, E. (2014). Automated classification of primary progressive aphasia subtypes from narrative speech transcripts. Cortex, 55, 43–60. https://doi.org/10.1016/j.cortex.2012.12.006
GarcÃa, A. M., Arias-Vergara, T., & J, C. V.-C., Nöth, E., Schuster, M., Welch, A. E., … Orozco-Arroyave, J. R. (2021). Cognitive determinants of dysarthria in Parkinson’s disease: An automated machine learning approach. Movement Disorders, 36, 2862–2873. https://doi.org/10.1002/mds.28751
GarcÃa, A. M., Carrillo, F., Orozco-Arroyave, J. R., Trujillo, N., Vargas Bonilla, J. F., Fittipaldi, S., . . . Cecchi, G. A. (2016). How language flows when movements don’t: An automated analysis of spontaneous discourse in Parkinson’s disease. Brain Lang, 162, 19-28. https://doi.org/10.1016/j.bandl.2016.07.008
GarcÃa, A. M., Escobar-Grisales, D., Vásquez Correa, J. C., Bocanegra, Y., Moreno, L., Carmona, J., & Orozco-Arroyave, J. R. (2022a). Detecting Parkinson’s disease and its cognitive phenotypes via automated semantic analyses of action stories. npj Parkinson’s Disease, 8(1), 163. https://doi.org/10.1038/s41531-022-00422-8
GarcÃa, A. M., Welch, A. E., Mandelli, M. L., Henry, M. L., Lukic, S., & Torres Prioris, M. J. (2022). Automated detection of speech timing alterations in autopsy-confirmed nonfluent/agrammatic variant primary progressive aphasia., 99(5), e500–e511. https://doi.org/10.1212/wnl.0000000000200750
GarcÃa, A. M., de Leon, J., Tee, B. L., Blasi, D. E., & Gorno-Tempini, M. L. (2023). Speech and language markers of neurodegeneration: A call for global equity. Brain. https://doi.org/10.1093/brain/awad253
GBD 2017 US Neurological Disorders Collaborators. (2021). Burden of neurological disorders across the US from 1990–2017: A global burden of disease study. JAMA Neurology, 78(2), 165–176. https://doi.org/10.1001/jamaneurol.2020.4152
Gertken, L. M., Amengual, M., & Birdong, D. (2014). Assessing language dominance with the Bilingual Language Profile. In P. Leclercq, A. Edmonds, & H. Hilton (Eds.), Measuring L2 Proficiency: Perspectives from SLA. Multilingual Matters.
X. Hao, X. Su, R. Horaud and X. Li (201). Fullsubnet: A full-band and sub-band fusion model for real-time single-channel speech enhancement. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 2021, pp. 6633-6637.  https://doi.org/10.1109/ICASSP39728.2021.9414177
Haulcy, R., & Glass, J. (2020). Classifying Alzheimer's disease using audio and text-based representations of speech. Frontiers in Psychology, 11, 624137. https://doi.org/10.3389/fpsyg.2020.624137
Hecker, P., Steckhan, N., Eyben, F., Schuller, B. W., & Arnrich, B. (2022). Voice analysis for neurological disorder recognition: A systematic review and perspective on emerging trends. Frontiers in Digital Health, 4, 842301. https://doi.org/10.3389/fdgth.2022.842301
Isaacson, R. S., Ganzer, C. A., Hristov, H., Hackett, K., Caesar, E., Cohen, R., . . . Krikorian, R. (2018). The clinical practice of risk reduction for Alzheimer's disease: A precision medicine approach. Alzheimer’s & Dementia, 14(12), 1663-1673. https://doi.org/10.1016/j.jalz.2018.08.004
Isaacson, R. S., Hristov, H., Saif, N., Hackett, K., Hendrix, S., Melendez, J., . . . Krikorian, R. (2019). Individualized clinical management of patients at risk for Alzheimer's dementia. Alzheimer’s & Dementia, 15(12), 1588-1602. https://doi.org/10.1016/j.jalz.2019.08.198
Jonell, P., Moëll, B., Håkansson, K., Henter, G. E., Kucherenko, T., Mikheeva, O., . . . Beskow, J. (2021). Multimodal capture of patient behaviour for improved detection of early dementia: Clinical feasibility and preliminary results. Frontiers in Computer Science, 3. https://doi.org/10.3389/fcomp.2021.642633
Laske, C., Sohrabi, H. R., Frost, S. M., López-de-Ipiña, K., Garrard, P., Buscema, M., . . . O'Bryant, S. E. (2015). Innovative diagnostic tools for early detection of Alzheimer's disease. Alzheimer’s & Dementia, 11(5), 561-578. https://doi.org/10.1016/j.jalz.2014.06.004
Li, J., Song, K., Li, J., Zheng, B., Li, D. S., Wu, X., . . . Meng, H. M. (2023). Leveraging pretrained representations with task-related keywords for Alzheimer's disease detection. ArXiv, abs/2303.08019.
Luz, S., Haider, F., de la Fuente Garcia, S., Fromm, D., & MacWhinney, B. (2021). Editorial: Alzheimer's dementia recognition through spontaneous speech. Frontiers in Computer Science, 3. https://doi.org/10.3389/fcomp.2021.780169
Luz, S., Haider, F., de la Fuente, S., Fromm, D., & MacWhinney, B. (2020). Alzheimer’s dementia recognition through spontaneous speech: The ADReSS challenge. Proceedings of Interspeech, 2020, 2172–2176. https://doi.org/10.21437/Interspeech.2020-2571
MacFarlane, H., Salem, A. C., Chen, L., Asgari, M., & Fombonne, E. (2022). Combining voice and language features improves automated autism detection. Autism Research, 15(7), 1288–1300. https://doi.org/10.1002/aur.2733
Macoir, J., Hudon, C., Tremblay, M. P., Laforce, R. J., & Wilson, M. A. (2019). The contribution of semantic memory to the recognition of basic emotions and emotional valence: Evidence from the semantic variant of primary progressive aphasia. Social Neuroscience, 14(6), 705–716. https://doi.org/10.1080/17470919.2019.1577295
Meilán, J. J., MartÃnez-Sánchez, F., Carro, J., López, D. E., Millian-Morell, L., & Arana, J. M. (2014). Speech in Alzheimer’s disease: Can temporal and acoustic parameters discriminate dementia? Dementia and Geriatric Cognitive Disorders, 37(5–6), 327–334. https://doi.org/10.1159/000356726
Mendez, M. F., Carr, A. R., & Paholpak, P. (2017). Psychotic-like speech in frontotemporal dementia. Journal of Neuropsychiatry and Clinical Neuroscience, 29(2), 183–185. https://doi.org/10.1176/appi.neuropsych.16030058
Mota, N. B., Copelli, M., & Ribeiro, S. (2017). Thought disorder measured as random speech structure classifies negative symptoms and schizophrenia diagnosis 6 months in advance. npj Schizophrenia, 3(1), 18. https://doi.org/10.1038/s41537-017-0019-3
Mota, N. B., Furtado, R., Maia, P. P. C., Copelli, M., & Ribeiro, S. (2014). Graph analysis of dream reports is especially informative about psychosis [Article]. Scientific Reports, 4, 3691. https://doi.org/10.1038/srep03691
Mota, N. B., Vasconcelos, N. A., Lemos, N., Pieretti, A. C., Kinouchi, O., Cecchi, G. A., . . . Ribeiro, S. (2012). Speech graphs provide a quantitative measure of thought disorder in psychosis. PLoS One, 7(4), e34928. https://doi.org/10.1371/journal.pone.0034928
Nandi, A., Counts, N., Chen, S., Seligman, B., Tortorice, D., Vigo, D., & Bloom, D. E. (2022). Global and regional projections of the economic burden of Alzheimer's disease and related dementias from 2019 to 2050: A value of statistical life approach. eClinicalMedicine, 51. https://doi.org/10.1016/j.eclinm.2022.101580
Nevler, N., Ash, S., Irwin, D. J., Liberman, M., & Grossman, M. (2019). Validated automatic speech biomarkers in primary progressive aphasia. Annals of Clinical and Translational Neurology, 6(1), 4–14. https://doi.org/10.1002/acn3.653
Nevler, N., Ash, S., Jester, C., Irwin, D. J., Liberman, M., & Grossman, M. (2017). Automatic measurement of prosody in behavioral variant FTD. Neurology, 89(7), 650–656. https://doi.org/10.1212/wnl.0000000000004236
Nichols, E., Steinmetz, J. D., Vollset, S. E., Fukutaki, K., Chalek, J., Abd-Allah, F., . . . Vos, T. (2022). Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. The Lancet Public Health, 7(2), e105-e125. https://doi.org/10.1016/S2468-2667(21)00249-8
Norel, R., Agurto, C., Heisig, S., Rice, J. J., Zhang, H., Ostrand, R., . . . Cecchi, G. A. (2020). Speech-based characterization of dopamine replacement therapy in people with Parkinson’s disease. npj Parkinson’s Disease, 6(12). https://doi.org/10.1038/s41531-020-0113-5
Orimaye, S. O., Wong, J. S. M., Golden, K. J., Wong, C. P., & Soyiri, I. N. (2017). Predicting probable Alzheimer’s disease using linguistic deficits and biomarkers. BMC Bioinformatics, 18(1), 34–34. https://doi.org/10.1186/s12859-016-1456-0
Orimaye, S. O., Wong, J. S.-M., & Wong, C. P. (2018). Deep language space neural network for classifying mild cognitive impairment and Alzheimer-type dementia. PLOS ONE, 13(11), e0205636. https://doi.org/10.1371/journal.pone.0205636
Padró, L. & Stanilovsky, E. (2012). FreeLing 3.0: Towards wider multilinguality. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12), 2473-2479, Istanbul, Turkey. European Language Resources Association (ELRA).
Paek, E. J. (2021). Emotional valence affects word retrieval during verb fluency tasks in Alzheimer's dementia. Frontiers in Psychology, 12, 777116. https://doi.org/10.3389/fpsyg.2021.777116
Parra, M. A., Baez, S., Allegri, R., Nitrini, R., Lopera, F., Slachevsky, A., . . . Ibáñez, A. (2018). Dementia in Latin America: Assessing the present and envisioning the future. Neurology, 90(5), 222-231. https://doi.org/10.1212/wnl.0000000000004897
Parra, M., Orellana, P., León, T., Cabello, V., Henriquez, F., Gomez, R., …, Durán-Aniotz, C. (2023). Biomarkers for dementia in Latin American countries: Gaps and opportunities. Alzheimer's & Dementia, 19(2), 721-735. https://doi.org/10.1002/alz.12757
Pell, M. D., Cheang, H. S., & Leonard, C. L. (2006). The impact of Parkinson’s disease on vocal-prosodic communication from the perspective of listeners. Brain & Language, 97(2), 123–134. https://doi.org/10.1016/j.bandl.2005.08.010
Pérez-Toro, P. A., Klumpp, P., Hernández, A., Arias-Vergara, T., Lillo, P., Slachevsky, A., . . . Orozco-Arroyave, J. R. (2022). Alzheimer’s detection from English to Spanish using acoustic and linguistic embeddings. 23rd Interspeech Conference, Incheon, Korea, 2483-2487.
Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey, C., & Sutskever, I. (2023). Robust speech recognition via large-scale weak supervision. Proceedings of the 40th International Conference on Machine Learning, 202, 28492-28518. Accessed on June 6, 2023.
Rentoumi, V., Raoufian, L., Ahmed, S., de Jager, C. A., & Garrard, P. (2014). Features and machine learning classification of connected speech samples from patients with autopsy proven Alzheimer’s disease with and without additional vascular pathology. Journal of Alzheimer’s Disease, 42(Suppl 3), S3-17. https://doi.org/10.3233/jad-140555
Riley, K. P., Snowdon, D. A., Desrosiers, M. F., & Markesbery, W. R. (2005). Early life linguistic ability, late life cognitive function, and neuropathology: Findings from the Nun Study. Neurobiology of Aging, 26(3), 341-347. https://doi.org/10.1016/j.neurobiolaging.2004.06.019
Rusz, J., & Tykalová, T. (2021). Does cognitive impairment influence motor speech performance in de novo Parkinson's disease? Movement Disorders, 36(12), 2980-2982. https://doi.org/10.1002/mds.28836
Rusz, J., Cmejla, R., Tykalova, T., Ruzickova, H., Klempir, J., Majerova, V., . . . Ruzicka, E. (2013). Imprecise vowel articulation as a potential early marker of Parkinson's disease: Effect of speaking task. J Acoust Soc Am, 134(3), 2171-2181. https://doi.org/10.1121/1.4816541
Sanz, C., Carrillo, F., Slachevsky, A., Forno, G., Gorno Tempini, M. L., Villagra, R., . . . GarcÃa, A. M. (2022). Automated text-level semantic markers of Alzheimer's disease. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, 14(1), e12276. https://doi.org/10.1002/dad2.12276
Seixas Lima, B., Levine, B., Graham, N. L., Leonard, C., Tang-Wai, D., Black, S., & Rochon, E. (2020). Impaired coherence for semantic but not episodic autobiographical memory in semantic variant primary progressive aphasia. Cortex, 123, 72–85. https://doi.org/10.1016/j.cortex.2019.10.008
Singh, S., Bucks, R. S., & Cuerden, J. M. (2001). Evaluation of an objective technique for analysing temporal variables in DAT spontaneous speech. Aphasiology, 15(6), 571–583. https://doi.org/10.1080/02687040143000041
Themistocleous, C., Webster, K., Afthinos, A., & Tsapkini, K. (2021). Part of speech production in patients with primary progressive aphasia: An analysis based on natural language processing. Am J Speech Lang Pathol, 30(1s), 466–480. https://doi.org/10.1044/2020_ajslp-19-00114
Tosto, G., Gasparini, M., Lenzi, G. L., & Bruno, G. (2011). Prosodic impairment in Alzheimer’s disease: Assessment and clinical relevance. J Neuropsychiatry Clin Neurosci, 23(2), E21-23. https://doi.org/10.1176/jnp.23.2.jnpe21
Van Der Donckt, J., Kappen, M., Degraeve, V., Demuynck, K., Vanderhasselt, M., & Van Hoecke, S. (2023). Ecologically valid speech collection in behavioral research: The Ghent Semi-spontaneous Speech Paradigm (GSSP). Behavior Research Methods, forthcoming. https://doi.org/10.31234/osf.io/e2qxw
Wang, J., Zhang, L., Liu, T., Pan, W., Hu, B., & Zhu, T. (2019). Acoustic differences between healthy and depressed people: A cross-situation study. BMC Psychiatry, 19(1), 300. https://doi.org/10.1186/s12888-019-2300-7
Webber, J., Parastatidis, S., & Robinson, I. (2010). REST in Practice: Hypermedia and Systems Architecture. O'Reilly Media, Incorporated. https://books.google.cl/books?id=5CjJcil4UfMC
Wilson, S. M., Henry, M. L., Besbris, M., Ogar, J. M., Dronkers, N. F., Jarrold, W., . . . Gorno-Tempini, M. L. (2010). Connected speech production in three variants of primary progressive aphasia. Brain, 133(Pt 7), 2069-2088. https://doi.org/10.1093/brain/awq129
Zimmerer, V. C., Hardy, C. J. D., Eastman, J., Dutta, S., Varnet, L., Bond, R. L., . . . Varley, R. A. (2020). Automated profiling of spontaneous speech in primary progressive aphasia and behavioral-variant frontotemporal dementia: An approach based on usage-frequency. Cortex. https://doi.org/10.1016/j.cortex.2020.08.027
Funding
Adolfo GarcÃa is an Atlantic Fellow at the Global Brain Health Institute (GBHI) and is partially supported by the National Institute On Aging of the National Institutes of Health (R01AG075775); ANID (FONDECYT Regular 1210176, 1210195); GBHI, Alzheimer’s Association, and Alzheimer’s Society (Alzheimer’s Association GBHI ALZ UK-22-865742); Universidad de Santiago de Chile (DICYT 032351GA_DAS); and the Multi-partner Consortium to Expand Dementia Research in Latin America (ReDLat), which is supported by the Fogarty International Center and the National Institutes of Health, the National Institute on Aging (R01AG057234, R01AG075775, R01AG21051, and CARDS-NIH), Alzheimer’s Association (SG-20-725707), Rainwater Charitable Foundation’s Tau Consortium, the Bluefield Project to Cure Frontotemporal Dementia, and the Global Brain Health Institute. The contents of this publication are solely the responsibility of the authors and do not represent the official views of these institutions.
Author information
Authors and Affiliations
Contributions
Adolfo M. GarcÃa: conception, organization, figure design, writing of the first draft. Fernando Johann: review and critique. Raúl Echegoyen: review and critique. Cecilia Calcaterra: review and critique. Pablo Riera: writing of the first draft, review and critique. Laouen Belloli: writing of the first draft, review and critique. Facundo Carrillo: writing of the first draft, review and critique.
Corresponding author
Ethics declarations
Ethics statement
No approval of research ethics committees was required to accomplish the goals of this study, as it only describes software development and refers to previous literature.
Competing interests
Adolfo M. GarcÃa, Fernando Johann, and Cecilia Calcaterra have received financial support from TELL SA. Raúl Echegoyen is consultant to TELL SA. Laouen Belloli, Pablo Riera, and Facundo Carrillo declare that they have no financial interest.
Additional information
Open practices statement
The materials described in the manuscript can be accessed with the credentials listed at the end of the abstract. This manuscript reports no original experiments.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
GarcÃa, A.M., Johann, F., Echegoyen, R. et al. Toolkit to Examine Lifelike Language (TELL): An app to capture speech and language markers of neurodegeneration. Behav Res (2023). https://doi.org/10.3758/s13428-023-02240-z
Accepted:
Published:
DOI: https://doi.org/10.3758/s13428-023-02240-z