Skip to main content

GFMT2: A psychometric measure of face matching ability

Abstract

We present an expanded version of a widely used measure of unfamiliar face matching ability, the Glasgow Face Matching Test (GFMT). The GFMT2 is created using the same source database as the original test but makes five key improvements. First, the test items include variation in head angle, pose, expression and subject-to-camera distance, making the new test more difficult and more representative of challenges in everyday face identification tasks. Second, short and long versions of the test each contain two forms that are calibrated to be of equal difficulty, allowing repeat tests to be performed to examine effects of training interventions. Third, the short-form tests contain no repeating face identities, thereby removing any confounding effects of familiarity that may have been present in the original test. Fourth, separate short versions are created to target exceptionally high performing or exceptionally low performing individuals using established psychometric principles. Fifth, all tests are implemented in an executable program, allowing them to be administered automatically. All tests are available free for scientific use via www.gfmt2.org.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    While this is potentially of theoretical interest, it also produces some challenges for test construction, because test item difficulty was correlated with test item response bias. This introduces some complexity when selecting test items for shorter versions that we describe in subsequent sections.

References

  1. Balsdon, T., Summersby, S., Kemp, R. I., & White, D. (2018). Improving face identification with specialist teams. Cognitive Research: Principles and Implications, 3(1), 25.

    Google Scholar 

  2. Bate, S., & Bennetts, R. J. (2014). The rehabilitation of face recognition impairments: a critical review and future directions. Frontiers in Human Neuroscience, 8, 491.

    Article  Google Scholar 

  3. Benton, A. L., Hamsher, K. S., Varney, N. R., & Spreen, O. (1983). Contributions to neuropsychological assessment. Oxford University Press.

  4. Bindemann, M., Brown, C., Koyas, T., & Russ, A. (2012). Individual differences in face identification postdict eyewitness accuracy. Journal of Applied Research in Memory and Cognition, 1, 96–103.

    Article  Google Scholar 

  5. Bobak, A. K., Bennetts, R. J., Parris, B. A., Jansari, A., & Bate, S. (2016). An in-depth cognitive examination of individuals with superior face recognition skills. Cortex, 82, 48–62.

    Article  Google Scholar 

  6. Bowles, D. C., McKone, E., Dawel, A., Duchaine, B., Palermo, R., Schmalzl, L., ... & Yovel, G. (2009). Diagnosing prosopagnosia: Effects of ageing, sex, and participant–stimulus ethnic match on the Cambridge Face Memory Test and Cambridge Face Perception Test. Cognitive Neuropsychology, 26, 423–455.

  7. Bruce, V., Bindemann, M., & Lander, K. (2018). Individual differences in face perception and person recognition. Cognitive Research: Principles andImplications, 3, 18.

  8. Burton, A. M., White, D., & McNeill, A. (2010). The Glasgow face matching test. Behavior Research Methods, 42, 286–291.

    Article  Google Scholar 

  9. Cao, Q., Shen, L., Xie, W., Parkhi, O. M., & Zisserman, A. (2018, May). Vggface2: A dataset for recognising faces across pose and age. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018) (pp. 67–74).

  10. Davis, J. P., Lander, K., Evans, R., & Jansari, A. (2016). Investigating predictors of superior face recognition ability in police super-recognisers. Applied Cognitive Psychology, 30, 827–840.

    Article  Google Scholar 

  11. DeGutis, J. M., Chiu, C., Grosso, M. E., Cohan, S. (2014). Face processing improvements in prosopagnosia: Successes and failures over the last 50 years. Frontiers in Human Neuroscience, 8, 561.

    Article  Google Scholar 

  12. Dowsett, A. J., & Burton, A. M. (2015). Unfamiliar face matching: Pairs out-perform individuals and provide a route to training. British Journal of Psychology, 106, 433–445.

    Article  Google Scholar 

  13. Duchaine, B. C., & Nakayama, K. (2006). The Cambridge face memory test: Results for neurologically intact individuals and an investigation of its validity using inverted face stimuli and prosopagnosic participants. Neuropsychologia, 44, 576– 585.

    Article  Google Scholar 

  14. Dunn, J. D., Summersby, S., Towler, A., Davis, J. P., & White, D. (2020). UNSW Face Test: A screening tool for super-recognizers. PloS one, 15(11), e0241747.

    Article  Google Scholar 

  15. Fysh, M. C., & Bindemann, M. (2018). The Kent face matching test. British Journal of Psychology, 109(2), 219–231.

    Article  Google Scholar 

  16. Guilford, J. P. (1954). Psychometric methods. McGraw-Hill.

  17. Hahn, C. A., O'Toole, A. J., & Phillips, P. J. (2016). Dissecting the time course of person recognition in natural viewing environments. British Journal of Psychology, 107(1), 117–134.

    Article  Google Scholar 

  18. Johnston, R. A., & Edmonds, A. J. (2009). Familiar and unfamiliar face recognition: A review. Memory, 17(5), 577–596.

  19. Matthews, C. M., & Mondloch, C. J. (2018). Improving identity matching of newly encountered faces: effects of multi-image training. Journal of Applied Research in Memory and Cognition, 7, 280–290.

    Article  Google Scholar 

  20. McCaffery, J. M., Robertson, D. J., Young, A. W., & Burton, A. M. (2018). Individual differences in face identity processing. Cognitive Research: Principles and Implications, 3, 21.

    Google Scholar 

  21. Megreya, A. M., & Burton, A. M. (2006). Unfamiliar faces are not faces: Evidence from a matching task. Memory & Cognition, 34, 865–876.

    Article  Google Scholar 

  22. Mollon, J. D., Bosten, J. M., Peterzell, D. H., & Webster, M. A. (2017). Individual differences in visual science: What can be learned and what is good experimental practice? Vision Research, 141, 4–15.

    Article  Google Scholar 

  23. Murray, E., & Bate, S. (2020). Diagnosing developmental prosopagnosia: repeat assessment using the Cambridge Face Memory Test. Royal Society Open Science, 7, 200884.

    Article  Google Scholar 

  24. Noyes, E., & Jenkins, R. (2017). Camera-to-subject distance affects face configuration and perceived identity. Cognition, 165, 97–104.

    Article  Google Scholar 

  25. Noyes, E., Phillips, P. J., & O’Toole, A. J. (2017). What is a super-recogniser? In: Face processing: Systems, disorders and cultural differences. M. Bindemann & A. Megreya (Eds.). Nova Science.

  26. Phillips, P. J., Yates, A. N., Hu, Y., Hahn, C. A., Noyes, E., Jackson, K., ... & O’Toole, A. J. (2018). Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms. Proceedings of the National Academy of Sciences, 115(24), 6171–6176.

  27. Ramon, M., Bobak, A. K., & White, D. (2019). Super-recognizers: From the lab to the world and back again. British Journal of Psychology, 110, 461–479.

    Article  Google Scholar 

  28. Robertson, D. J., Noyes, E., Dowsett, A. J., Jenkins, R., & Burton, A. M. (2016). Face recognition by metropolitan police super-recognisers. PloS one, 11, e0150036.

    Article  Google Scholar 

  29. Russell, R., Duchaine, B., & Nakayama, K. (2009). Super-recognizers: People with extraordinary face recognition ability. Psychonomic Bulletin & Review, 16, 252–257.

    Article  Google Scholar 

  30. Shakeshaft, N. G., & Plomin, R. (2015). Genetic specificity of face recognition. Proceedings of the National Academy of Sciences, 112, 12887–12892.

    Article  Google Scholar 

  31. Stacchi, L., Huguenin-Elie, E., Caldara, R., & Ramon, M. (2020). Normative data for two challenging tests of face matching under ecological conditions. Cognitive research: principles and implications, 5(1), 1–17.

  32. Towler, A., Kemp, R. I., Burton, A. M., Dunn, J. D., Wayne, T., Moreton, R., & White, D. (2019). Do professional facial image comparison training courses work? PloS one, 14, e0211037.

    Article  Google Scholar 

  33. Towler, A., Keshwa, M., Ton, B., Kemp, R. I., & White, D. (2021). Diagnostic Feature Training Improves Face Matching Accuracy. Journal of Experimental Psychology: Learning, Memory, and Cognition. Advance online publication. https://doi.org/10.1037/xlm0000972.

  34. White, D., Kemp, R. I., Jenkins, R., & Burton, A. M. (2014a). Feedback training for facial image comparison. Psychonomic Bulletin & Review, 21, 100–106.

    Article  Google Scholar 

  35. White, D., Kemp, R. I., Jenkins, R., Matheson, M., & Burton, A. M. (2014b). Passport officers’ errors in face matching. PloS one, 9(8), e103510.

    Article  Google Scholar 

  36. White, D., Phillips, P. J., Hahn, C. A., Hill, M., & O'Toole, A. J. (2015). Perceptual expertise in forensic facial image comparison. Proceedings of the Royal Society B: Biological Sciences, 282, 20151292.

    Article  Google Scholar 

  37. White, D., Rivolta, D., Burton, A. M., Al-Janabi, S., & Palermo, R. (2017). Face matching impairment in developmental prosopagnosia. Quarterly Journal of Experimental Psychology, 70(2), 287–297.

    Article  Google Scholar 

  38. White, D., Towler, A., & Kemp, R. I. (2020). Understanding professional expertise in unfamiliar face matching. In M. Bindemann (Ed.), Forensic face matching: Research and practice. Oxford University Press.

  39. Wilhelm, O., Herzmann, G., Kunina, O., Danthiir, V., Schacht, A., & Sommer, W. (2010). Individual differences in perceiving and recognizing faces—One element of social cognition. Journal of Personality and Social Psychology, 99, 530.

    Article  Google Scholar 

  40. Wilmer, J. B. (2017). Individual differences in face recognition: A decade of discovery. Current Directions in Psychological Science, 26(3), 225–230.

    Article  Google Scholar 

  41. Wilmer, J. B., Germine, L., Chabris, C. F., Chatterjee, G., Gerbasi, M., & Nakayama, K. (2012). Capturing specific abilities as a window into human individuality: The example of face recognition. Cognitive Neuropsychology, 29(5–6), 360–392.

    Article  Google Scholar 

  42. Wilmer, J. B., Germine, L., Chabris, C. F., Chatterjee, G., Williams, M., Loken, E., ... & Duchaine, B. (2010). Human face recognition ability is specific and highly heritable. Proceedings of the National Academy of Sciences, 107, 5238–5241.

  43. Yovel, G., Wilmer, J. B., & Duchaine, B. (2014). What can individual differences reveal about face processing? Frontiers in Human Neuroscience, 8, 562.

Download references

Author note

Preparation of this chapter was supported by an Australian Research Council Linkage Project (LP160101523), and an Australian Research Council Discovery Project grant to White (DP190100957). We thank Anita Trinh for assistance with data collection. The original Glasgow Face Matching Test was developed as a collaboration between two universities in Glasgow, UK. We retain the original name despite no longer holding affiliations with those universities. The face images used in GFMT2 were created as part of the original collaboration, much of which was led by our friend and colleague, Allan McNeill, 1958–2016.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David White.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 219 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

White, D., Guilbert, D., Varela, V.P.L. et al. GFMT2: A psychometric measure of face matching ability. Behav Res (2021). https://doi.org/10.3758/s13428-021-01638-x

Download citation

Keywords

  • Face perception
  • Perceptual expertise
  • Facial image comparison
  • Super-recognizers
  • Congenital prosopagnosia
  • Developmental prosopagnosia
  • Unfamiliar face matching
  • Expertise
  • Facial recognition