Skip to main content

Design, Development and Functionality of a Haptic Force-Matching Device for Measuring Sensory Attenuation

Abstract

In this paper we describe the design, development and functionality of a haptic force-matching device. This device measures precise sensorimotor perception by determining a subject’s ability to successfully attenuate incoming sensory signals. Sensory attenuation provides a novel method of investigating psychophysical aspects of perception and may help to formulate neurocognitive models that may account for maladaptive interoceptive processing. Several similar custom-made devices have been reported in the literature; however, a clear description of the mechanical engineering necessary to build such a device is lacking. We present, in detail, the hardware and software necessary to build such a device. Subjects (N = 25) were asked to match a target force on their right index finger, first by pressing directly on their finger with their other hand, then by controlling the device through an external potentiometer to control the force (indirectly) though a torque motor. In the direct condition, we observed a consistent overestimation of the force reproduced; mean force error 0.50 newtons (standard error = 0.04). In the slider condition we observed a more accurate, yet small, underestimation of reproduced force: −0.30 newtons (standard error = 0.03).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Bays, P. M., Wolpert, D. M., & Flanagan, J. R. (2005). Perception of the consequences of self-action is temporally tuned and event driven. Current Biology, 15(12), 1125-1128. https://doi.org/10.1016/j.cub.2005.05.023

    Article  PubMed  Google Scholar 

  2. Bays, P., Flanagan, J., & Wolpert, D. (2006, 03/01). Attenuation of Self-Generated Tactile Sensations Is Predictive, not Postdictive. PLoS Biology, 4, e28. https://doi.org/10.1371/journal.pbio.0040028

  3. Blakemore, S. J., Wolpert, D. M., & Frith, C. D. (1998). Central cancellation of self-produced tickle sensation. Nature of Neuroscience, 1(7), 635–640. https://doi.org/10.1038/2870

    Article  Google Scholar 

  4. Blakemore, S. J., Wolpert, D. M., & Frith, C. D. (2002). Abnormalities in the awareness of action. Trends Cognitive Science, 6(6), 237–242.

    Article  Google Scholar 

  5. Brown, H., Adams, R. A., Parees, I., Edwards, M., & Friston, K. (2013, Nov). Active inference, sensory attenuation and illusions. Cognitive Process, 14(4), 411–427. https://doi.org/10.1007/s10339-013-0571-3

    Article  Google Scholar 

  6. Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204. https://doi.org/10.1017/S0140525X12000477

    Article  Google Scholar 

  7. Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–836. https://doi.org/10.1098/rstb.2005.1622

    Article  Google Scholar 

  8. Friston, K., Schwartenbeck, P., Fitzgerald, T., Moutoussis, M., Behrens, T., & Dolan, R. J. (2013). The anatomy of choice: active inference and agency. Front Human Neuroscience, 7, 598. https://doi.org/10.3389/fnhum.2013.00598

    Article  Google Scholar 

  9. Kroenke, K., Spitzer, R. L., & Williams, J. B. (2001). The PHQ-9: validity of a brief depression severity measure. Journal Of General Internal Medicine, 16(9), 606–613.

    Article  Google Scholar 

  10. Kroenke, K., Wu, J., Yu, Z., Bair, M. J., Kean, J., Stump, T., & Monahan, P. O. (2016). The Patient Health Questionnaire Anxiety and Depression Scale (PHQ-ADS): Initial Validation in Three Clinical Trials. Psychosomatic Medicine, 78(6), 716–727. https://doi.org/10.1097/PSY.0000000000000322

    Article  PubMed  PubMed Central  Google Scholar 

  11. Palmer, C. E., Davare, M., & Kilner, J. M. (2016). Physiological and Perceptual Sensory Attenuation Have Different Underlying Neurophysiological Correlates. Journal Neuroscience, 36(42), 10803-10812. https://doi.org/10.1523/jneurosci.1694-16.2016

    Article  PubMed  Google Scholar 

  12. Parees, I., Brown, H., Nuruki, A., Adams, R. A., Davare, M., Bhatia, K. P., Friston, K., & Edwards, M. J. (2014). Loss of sensory attenuation in patients with functional (psychogenic) movement disorders. Brain, 137(Pt 11), 2916–2921. https://doi.org/10.1093/brain/awu237

    Article  PubMed  Google Scholar 

  13. Peters, E., Joseph, S., Day, S., & Garety, P. (2004). Measuring delusional ideation: the 21-item Peters et al. Delusions Inventory (PDI). Schizophr Bull, 30(4), 1005–1022. https://doi.org/10.1093/oxfordjournals.schbul.a007116

    Article  PubMed  Google Scholar 

  14. Rief, W., & Barsky, A. J. (2005, 11//). Psychobiological perspectives on somatoform disorders. Psychoneuroendocrinology, 30(10), 996–1002. https://doi.org/10.1016/j.psyneuen.2005.03.018

  15. Seth, A. K., & Friston, K. J. (2016). Active interoceptive inference and the emotional brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1708), 20160007.

    Article  Google Scholar 

  16. Shergill, S. S., Bays, P. M., Frith, C. D., & Wolpert, D. M. (2003). Two eyes for an eye: the neuroscience of force escalation. Science, 301(5630), 187. https://doi.org/10.1126/science.1085327

    Article  PubMed  Google Scholar 

  17. Shergill, S. S., Samson, G., Bays, P. M., Frith, C. D., & Wolpert, D. M. (2005). Evidence for sensory prediction deficits in schizophrenia. American Journal Psychiatry, 162(12), 2384–2386. https://doi.org/10.1176/appi.ajp.162.12.2384

    Article  Google Scholar 

  18. Shergill, S. S., White, T. P., Joyce, D. W., Bays, P. M., Wolpert, D. M., & Frith, C. D. (2014). Functional magnetic resonance imaging of impaired sensory prediction in schizophrenia. JAMA Psychiatry, 71(1), 28–35. https://doi.org/10.1001/jamapsychiatry.2013.2974

    Article  PubMed  Google Scholar 

  19. Spitzer, R. L., Kroenke, K., Williams, J. B., & Lowe, B. (2006). A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch International Medicine, 166(10), 1092–1097. https://doi.org/10.1001/archinte.166.10.1092

    Article  Google Scholar 

  20. StataCorp. (2017). Stata Statistical Software: Release 15. StataCorp LLC

  21. Teufel, C., Kingdon, A., Ingram, J. N., Wolpert, D. M., & Fletcher, P. C. (2010). Deficits in sensory prediction are related to delusional ideation in healthy individuals. Neuropsychologia, 48(14), 4169–4172. https://doi.org/10.1016/j.neuropsychologia.2010.10.024

    Article  PubMed  PubMed Central  Google Scholar 

  22. Valles, N. L., & Reed, K. B. (2013). To know your own strength: overriding natural force attenuation. IEEE Transactions on Haptics, 7(2), 264–269.

    Article  Google Scholar 

  23. Voss, M., Bays, P. M., Rothwell, J. C., & Wolpert, D. M. (2007). An improvement in perception of self-generated tactile stimuli following theta-burst stimulation of primary motor cortex. Neuropsychologia, 45(12), 2712–2717. https://doi.org/10.1016/j.neuropsychologia.2007.04.008

    Article  PubMed  PubMed Central  Google Scholar 

  24. Walsh, L. D., Taylor, J. L., & Gandevia, S. C. (2011). Overestimation of force during matching of externally generated forces. The Journal of Physiology, 589(3), 547–557.

    Article  Google Scholar 

  25. Wolpe, N., Ingram, J. N., Tsvetanov, K. A., Geerligs, L., Kievit, R. A., Henson, R. N., Wolpert, D. M., Cam, C. A. N., Tyler, L. K., Brayne, C., Bullmore, E., Calder, A., Cusack, R., Dalgleish, T., Duncan, J., Matthews, F. E., Marslen-Wilson, W., Shafto, M. A., Campbell, K., Cheung, T., Davis, S., McCarrey, A., Mustafa, A., Price, D., Samu, D., Taylor, J. R., Treder, M., van Belle, J., Williams, N., Bates, L., Emery, T., Erzinçlioglu, S., Gadie, A., Gerbase, S., Georgieva, S., Hanley, C., Parkin, B., Troy, D., Auer, T., Correia, M., Gao, L., Green, E., Henriques, R., Allen, J., Amery, G., Amunts, L., Barcroft, A., Castle, A., Dias, C., Dowrick, J., Fair, M., Fisher, H., Goulding, A., Grewal, A., Hale, G., Hilton, A., Johnson, F., Johnston, P., Kavanagh-Williamson, T., Kwasniewska, M., McMinn, A., Norman, K., Penrose, J., Roby, F., Rowland, D., Sargeant, J., Squire, M., Stevens, B., Stoddart, A., Stone, C., Thompson, T., Yazlik, O., Barnes, D., Dixon, M., Hillman, J., Mitchell, J., Villis, L., & Rowe, J. B. (2016), Ageing increases reliance on sensorimotor prediction through structural and functional differences in frontostriatal circuits [Article] Nature Communications, 7, 13034. https://doi.org/10.1038/ncomms13034, https://www.nature.com/articles/ncomms13034#supplementary-information

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wolpert, D. M., & Flanagan, J. R. (2001, Sep 18). Motor prediction. Curr Biol, 11(18), R729–732. https://doi.org/10.1016/s0960-9822(01)00432-8

    Article  PubMed  Google Scholar 

Download references

Funding

David McNaughton is the recipient of the Chiropractic Australia PhD scholarship grant. A portion of the funds were used to commission the construction of the device from Maxon group.

Author information

Affiliations

Authors

Contributions

David McNaughton: Conceptualisation: Data curation; Formal analysis; Funding acquisition; Writing—original draft

Carlos Bacigalupo: Methodology; Construction of device; Writing—original draft

Alicia Georghiades: Project Administration; data curation; Writing—review and editing

Julia Hush: Conceptualisation; Study supervision; Writing—review and editing

Alissa Beath: Conceptualisation; Study supervision; Writing—review and editing

Michael Jones: Conceptualisation: Data curation; Formal analysis; Study supervision; Funding acquisition; Writing—original draft

Corresponding author

Correspondence to David McNaughton.

Ethics declarations

Data availability

De-identified experimental data available on request to authors.

Consent for publication

We consent to publication to Behaviour Research Methods and confirm that the current manuscript is not under review by or submitted to any other journal.

Code availability

The programming code required for the device is available through the Open Science Framework. There are two files; the .py is for the GUI and top-level functions, while the .cpp is for the server and low-level functions including comms with the EPOS4. These files are available through this link: https://osf.io/dmkcr/?view_only=25bcac9d479b4c06a7d526ee8f1f6e71

Ethics approval

The study was approved by the Macquarie University Human Sciences Ethics Subcommittee (Approval number: 52019574612789).

Conflicts of interest/Competing interests

No conflict of interest or competing interest to declare.

Additional information

The study was approved by the Macquarie University Human Sciences Ethics Subcommittee (Approval number: 52019574612789).

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The force-matching paradigm provides a novel method to investigate psychophysical aspects of perception.

• We provide the mechanical engineering and software design necessary to build a force-matching device.

• Our device functions similarly to previous devices.

Supplementary Information

ESM 1

(DOCX 8217 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McNaughton, D., Bacigalupo, C., Georghiades, A. et al. Design, Development and Functionality of a Haptic Force-Matching Device for Measuring Sensory Attenuation. Behav Res (2021). https://doi.org/10.3758/s13428-021-01605-6

Download citation

Keywords

  • Sensory attenuation
  • Predictive processing
  • Perception
  • Sensorimotor
  • Force-matching