Harnessing tactile waves to measure skin-to-skin interactions

Abstract

Skin-to-skin touch is an essential form of tactile interaction, yet there is no known method to quantify how we touch our own skin or someone else’s skin. Skin-to-skin touch is particularly challenging to measure objectively, since interposing an instrumented sheet, no matter how thin and flexible, between the interacting skins is not an option. To fill this gap, we explored a technique that takes advantage of the propagation of vibrations from the locus of touch to pick up a signal that contains information about skin-to-skin tactile interactions. These “tactile waves” were measured by an accelerometer sensor placed on the touching finger. Applied pressure and speed had a direct influence on measured signal power when the target of touch was the self or another person. The measurements were insensitive to changes in the location of the sensor relative to the target. Our study suggests that this method has potential for probing behaviour during skin-to-skin tactile interactions and could be a valuable technique to study social touch, self-touch, and motor control. The method is non-invasive, easy to commission, inexpensive, and robust.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ackerley, R., Olausson, H., Wessberg, J., & McGlone, F. (2012). Wetness perception across body sites. Neuroscience Letters, 522(1), 73–77.

    PubMed  Article  PubMed Central  Google Scholar 

  2. Adams, M. J., Johnson, S. A., Lefèvre, P., Lévesque, V., Hayward, V., André, T., & Thonnard, J.-L. (2013). Finger pad friction and its role in grip and touch. Journal of the Royal Society Interface, 10(80), 20120467.

    PubMed Central  Article  Google Scholar 

  3. Akay, A. (2002). Acoustics of friction. The Journal of the Acoustical Society of America, 111(4), 1525–1548.

    PubMed  Article  PubMed Central  Google Scholar 

  4. Andrews, J. W., Adams, M. J., & Montenegro-Johnson, T. D. (2020). A universal scaling law of Mammalian touch. Science Advances, In press.

  5. Appelhans, B. M., & Luecken, L. J. (2006). Heart rate variability as an index of regulated emotional responding. Review of General Psychology, 10(3), 229–240.

    Article  Google Scholar 

  6. Baumberger, T., & Caroli, C. (2006). Solid friction from stick–slip down to pinning and aging. Advances in Physics, 55(3–4), 279–348.

  7. Bays, P. M., & Wolpert, D. M. (2008). Predictive attenuation in the perception of touch. In P. Haggard, Y. Rosetti, & M. Kawato (Eds.), Sensorimotor foundations of higher cognition (Vol. 22, pp. 339–358). Oxford University Press.

  8. Bensmaia, S. J., & Hollins, M. (2003). The vibrations of texture. Somatosensory & Motor Research, 20(1), 33–43.

    Article  Google Scholar 

  9. Blakemore, S.-J., Wolpert, D. M., & Frith, C. D. (2000). Why can’t you tickle yourself? Neuroreport, 11(11), R11–R16.

    PubMed  Article  PubMed Central  Google Scholar 

  10. Boiten, F. A., Frijda, N. H., & Wientjes, C. J. E. (1994). Emotions and respiratory patterns: review and critical analysis. International Journal of Psychophysiology, 17(2), 103–128.

    PubMed  Article  PubMed Central  Google Scholar 

  11. Cascio, C. J., Moore, D., & McGlone, F. (2019). Social touch and human development. Developmental Cognitive Neuroscience, 35, 5–11.

    PubMed  Article  PubMed Central  Google Scholar 

  12. Comon, P., & Jutten, C. (2010). Handbook of blind source separation: independent component analysis and applications. Academic Press.

  13. Crucianelli, L., Metcalf, N. K., Fotopoulou, A. K., & Jenkinson, P. M. (2013). Bodily pleasure matters: velocity of touch modulates body ownership during the rubber hand illusion. Frontiers in Psychology, 4, 703.

    PubMed  PubMed Central  Article  Google Scholar 

  14. Delhaye, B., Hayward, V., Lefèvre, P., & Thonnard, J.-L. (2012). Texture-induced vibrations in the forearm during tactile exploration. Frontiers in Behavioral Neuroscience, 6(37), 1–10.

    Google Scholar 

  15. Einhäuser, W., Stout, J., Koch, C., & Carter, O. (2008). Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry. Proceedings of the National Academy of Sciences, 105(5), 1704–1709.

    Article  Google Scholar 

  16. Feldman, A. G. (1980). Superposition of motor programs—i. rhythmic forearm movements in man. Neuroscience, 5(1), 81–90.

    PubMed  Article  Google Scholar 

  17. Garfinkel, S. N., Seth, A. K., Barrett, A. B., Suzuki, K., & Critchley, H. D. (2015). Knowing your own heart: distinguishing interoceptive accuracy from interoceptive awareness. Biological Psychology, 104, 65–74.

    PubMed  Article  PubMed Central  Google Scholar 

  18. Goldenberg, M. S., Yack, H. J., Cerny, F. J., & Burton, H. W. (1991). Acoustic myography as an indicator of force during sustained contractions of a small hand muscle. Journal of Applied Physiology, 70(1), 87–91.

    PubMed  Article  PubMed Central  Google Scholar 

  19. Gu, Y., Yu, C., Li, Z., Li, W., Xu, S., Wei, X., & Shi, Y. (2019). Accurate and low-latency sensing of touch contact on any surface with finger-worn IMU sensor (pp. 1059–1070). Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology.

  20. Gueorguiev, D., Bochereau, S., Mouraux, A., Hayward, V., & Thonnard, J. L. (2016). Touch uses frictional cues to discriminate flat materials. Scientific Reports, 6, 25553.

    PubMed  PubMed Central  Article  Google Scholar 

  21. Guigon, E., Chafik, O., Jarrasse, N., & Roby-Brami, A. (2019). Experimental and theoretical study of velocity fluctuations during slow movements in humans. Journal of Neurophysiology, 121(2), 715–727.

    PubMed  Article  PubMed Central  Google Scholar 

  22. Hipp, J., Arabzadeh, E., Zorzin, E., Conradt, J., Kayser, C., Diamond, M. E., & Konig, P. (2006). Texture signals in whisker vibrations. Journal of Neurophysiology, 95(3), 1792–1799.

    PubMed  Article  PubMed Central  Google Scholar 

  23. Hodges, P. W. (2019). Consensus for experimental design in electromyography (CEDE) project. Journal of Electromyography and Kinesiology In press.

  24. Husserl, E. (1989). The constitution of psychic reality through the body (pp. 151–169). Ideas pertaining to a pure phenomenology and to a phenomenological philosophy, Springer.

  25. Johansson, R. S., & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research, 56, 550–564.

    PubMed  Article  PubMed Central  Google Scholar 

  26. Jousmäki, V., & Hari, R. (1998). Parchment-skin illusion: sound-biased touch. Current Biology, 8(6), 190–191.

    Article  Google Scholar 

  27. Kilteni, K., & Ehrsson, H. H. (2017). Body ownership determines the attenuation of self-generated tactile sensations. Proceedings of the National Academy of Sciences, 114(31), 8426–8431.

    Article  Google Scholar 

  28. Kirkpatrick, S., Duncan, D. D., & Fang, L. (2004). Low-frequency surface wave propagation and the viscoelastic behavior of porcine skin. Journal of Biomedical Optics, 9(6), 1311–1320.

    PubMed  Article  PubMed Central  Google Scholar 

  29. Klöcker, A., Wiertlewski, M., Théate, V., Hayward, V., & Thonnard, J.-L. (2013). Physical factors influencing pleasant touch during tactile exploration. PloS One, 8(11), e79085.

    PubMed  PubMed Central  Article  Google Scholar 

  30. Laput G., Xiao R. & Harrison, C. (2016) Viband: High-fidelity bio-acoustic sensing using commodity smartwatch accelerometers. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pp. 321–333.

  31. Latash, M. L., Scholz, J. P., & Schöner, G. (2007). Toward a new theory of motor synergies. Motor Control, 11(3), 276–308.

    PubMed  Article  PubMed Central  Google Scholar 

  32. Manfredi, L. R., Baker, A. T., Elias, D. O., Dammann III, J. F., Zielinski, M. C., Polashock, V. S., & Bensmaia, S. J. (2012). The effect of surface wave propagation on neural responses to vibration in primate glabrous skin. PLoS One, 7(2), e31203.

    PubMed  PubMed Central  Article  Google Scholar 

  33. Mannini, A., Intille, S. S., Rosenberger, M., Sabatini, A. M., & Haskell, W. (2013). Activity recognition using a single accelerometer placed at the wrist or ankle. Medicine and Science in Sports and Exercise, 45(11), 2193.

    PubMed  PubMed Central  Article  Google Scholar 

  34. McGlone, F., Wessberg, J., & Olausson, H. (2014). Discriminative and affective touch: sensing and feeling. Neuron, 82(4), 737–755.

    PubMed  Article  PubMed Central  Google Scholar 

  35. Merleau-Ponty, M. (1962). Phenomenology of perception. Routledge.

  36. Morris, J. R. W. (1973). Accelerometry—a technique for the measurement of human body movements. Journal of Biomechanics, 6(6), 729–736.

    PubMed  Article  PubMed Central  Google Scholar 

  37. Morrison, I., Löken, L. S., & Olausson, H. (2010). The skin as a social organ. Experimental Brain Research, 204(3), 305–314.

    PubMed  Article  PubMed Central  Google Scholar 

  38. Ritt, J. T., Andermann, M. L., & Moore, C. I. (2008). Embodied information processing: vibrissa mechanics and texture features shape micromotions in actively sensing rats. Neuron, 57(4), 599–613.

    PubMed  PubMed Central  Article  Google Scholar 

  39. Schütz-Bosbach, S., Musil, J. J., & Haggard, P. (2009). Touchant-touché: The role of self-touch in the representation of body structure. Consciousness and Cognition, 18(1), 2–11.

    PubMed  Article  PubMed Central  Google Scholar 

  40. Schwarz, C. (2016). The slip hypothesis: tactile perception and its neuronal bases. Trends in Neurosciences, 39(7), 449–462.

    PubMed  Article  Google Scholar 

  41. Shao, Y., Hayward, V., & Visell, Y. (2016). Spatial patterns of cutaneous vibration during whole-hand haptic interactions. Proceedings of the National Academy of Sciences, 113(15), 4188–4193.

    Article  Google Scholar 

  42. Shao, Y., Hayward, V., & Visell, Y. (2020). Compression of dynamic tactile information in the human hand. Science Advances, 6, eaaz1158.

    PubMed  PubMed Central  Article  Google Scholar 

  43. Shergill, S. S., Bays, P. M., Frith, C. D., & Wolpert, D. M. (2003). Two eyes for an eye: the neuroscience of force escalation. Science, 301(5630), 187–187.

    PubMed  Article  PubMed Central  Google Scholar 

  44. Shi, Y., Zhang, H., Zhao, K., Cao, J., Sun, M., & Nanayakkara, S. (2020). Ready, steady, touch! sensing physical contact with a finger-mounted IMU. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(2), 1–25.

    Article  Google Scholar 

  45. Tanaka, Y., Horita, Y., Sano, A., & Fujimoto, H. (2011). Tactile sensing utilizing human tactile perception. In IEEE World Haptics Conference (pp. 621–626). IEEE.

  46. Tanaka, Y., Horita, Y., & Sano, A. (2012). Finger-mounted skin vibration sensor for active touch. In P. Isokoski & J. Springare (Eds.), Haptics: perception, devices, mobility, and communication (pp. 169–174). Berlin, Heidelberg: Springer.

  47. Tronstad, C., Johnsen, G. K., Grimnes, S., & Martinsen, Ø. G. (2010). A study on electrode gels for skin conductance measurements. Physiological Measurement, 31(10), 1395–1410.

    PubMed  Article  PubMed Central  Google Scholar 

  48. Valderas, M. T., Bolea, J., Laguna, P., Vallverdù, M., & Bailón, R. (2015). Human emotion recognition using heart rate variability analysis with spectral bands based on respiration. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 6134–6137). IEEE.

  49. van Dooren, M., de Vries, J. J. G., & Janssen, J. H. (2012). Emotional sweating across the body: Comparing 16 different skin conductance measurement locations. Physiology & Behavior, 106(2), 298–304.

    Article  Google Scholar 

  50. van Stralen, H. E., van Zandvoort, M. J. E., Hoppenbrouwers, S. S., Vissers, L. M. G., Kappelle, L. J., & Dijkerman, H. C. (2014). Affective touch modulates the rubber hand illusion. Cognition, 131(1), 147–158.

    PubMed  Article  PubMed Central  Google Scholar 

  51. Verrillo, R. T., Bolanowski, S. J., & McGlone, F. P. (2003). Intra-and interactive touch on the face. Somatosensory & Motor Research, 20(1), 3–11.

    Article  Google Scholar 

  52. Vexler, A., Polyansky, I., & Gorodetsky, R. (1999). Evaluation of skin viscoelasticity and anisotropy by measurement of speed of shear wave propagation with viscoelasticity skin analyzer. Journal of Investigative Dermatology, 113(5), 732–739.

    PubMed  Article  PubMed Central  Google Scholar 

  53. Waris, A., Niazi, I. K., Jamil, M., Englehart, K., Jensen, W., & Kamavuako, E. N. (2018). Multiday evaluation of techniques for EMG-based classification of hand motions. IEEE Journal of Biomedical and Health Informatics, 23(4), 1526–1534.

    PubMed  Article  PubMed Central  Google Scholar 

  54. Wierda, S. M., van Rijn, H., Taatgen, N. A., & Martens, S. (2012). Pupil dilation deconvolution reveals the dynamics of attention at high temporal resolution. Proceedings of the National Academy of Sciences, 109(22), 8456–8460.

    Article  Google Scholar 

  55. Wiertlewski, M., Hudin, C., & Hayward, V. (2011). On the 1/f noise and non-integer harmonic decay of the interaction of a finger sliding on flat and sinusoidal surfaces. in Proceedings of World Haptics Conference, pp. 25–30.

  56. Wiertlewski, M., Lozada, J., Pissaloux, E., & Hayward, V. (2010). Causality inversion in the reproduction of roughness. In A. M. L. Kappers, J. B. F. van Erp, W. M. Bergmann-Tiest, & F. C. T. van der Helm (Eds.), Haptics: generating and perceiving tangible sensations (pp. 17–24). Berlin, Heidelberg: Springer.

Download references

Acknowledgements

We thank Agnès Roby-Bramy and Yon Visell for their insightful discussions. This work was supported by Agence nationale de la recherche grant ANR-16-CE28-0015 “Developmental Tool Mastery” led by Alessandro Farné. The authors declare that no competing interests exist.

Open practices statement

The data for all experiments as well as the script to filter and analyse the data are available on the OSF repository and can be accessed via this link: https://osf.io/7gw5z/?view_only=7d351d4a7b6a443392157da6bb643a90

Author information

Affiliations

Authors

Corresponding author

Correspondence to Louise P. Kirsch.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 49 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kirsch, L.P., Job, X.E., Auvray, M. et al. Harnessing tactile waves to measure skin-to-skin interactions. Behav Res (2020). https://doi.org/10.3758/s13428-020-01492-3

Download citation

Keywords

  • Tactile interaction
  • Skin-to-skin touch
  • Self-touch
  • Social touch