Aarsland, D., Creese, B., Politis, M., Chaudhuri, K. R., Ffytche, D. H., Weintraub, D., & Ballard, C. (2017). Cognitive decline in Parkinson disease. Nature Reviews Neurology, 13(4), 217–231. https://doi.org/10.1038/nrneurol.2017.27
Article
PubMed
PubMed Central
Google Scholar
Adler, C. M., Goldberg, T. E., Malhotra, A. K., Pickar, D., & Breier, A. (1998). Effects of ketamine on thought disorder, working memory, and semantic memory in healthy volunteers. Biological Psychiatry, 43(11), 811–816. https://doi.org/10.1016/S0006-3223(97)00556-8
Article
PubMed
Google Scholar
Anderson, B. J., Rapp, D. N., Baek, D. H., McCloskey, D. P., Coburn-Litvak, P. S., & Robinson, J. K. (2000). Exercise influences spatial learning in the radial arm maze. Physiology and Behavior, 70(5), 425–429. https://doi.org/10.1016/S0031-9384(00)00282-1
Article
PubMed
Google Scholar
Aoki, R., Tsuboi, T., & Okamoto, H. (2015). Y-maze avoidance: An automated and rapid associative learning paradigm in zebrafish. Neuroscience Research, 91, 69–72. https://doi.org/10.1016/j.neures.2014.10.012
Article
PubMed
Google Scholar
Arendash, G. W., Gordon, M. N., Diamond, D. M., Austin, L. A., Hatcher, J. M., Jantzen, P., DiCarlo, G., Wilcock, D., & Morgan, D. (2001). Behavioral assessment of Alzheimer’s transgenic mice following long-term Aβ vaccination: Task specificity and correlations between Aβ deposition and spatial memory. DNA and Cell Biology, 20(11), 737–744. https://doi.org/10.1089/10445490152717604
Article
PubMed
Google Scholar
Bailey, H., & Thompson, P. (2006). Quantitative analysis of bottlenose dolphin movement patterns and their relationship with foraging. Journal of Animal Ecology, 75(2), 456–465. https://doi.org/10.1111/j.1365-2656.2006.01066.x
Article
Google Scholar
Ballinger, E. C., Ananth, M., Talmage, D. A., & Role, L. W. (2016). Basal Forebrain Cholinergic Circuits and Signaling in Cognition and Cognitive Decline. Neuron, 91(6), 1199–1218. https://doi.org/10.1016/j.neuron.2016.09.006
Article
PubMed
PubMed Central
Google Scholar
Bizon, J., Prescott, S., & Nicolle, M. M. (2007). Intact spatial learning in adult Tg2576 mice. Neurobiology of Aging, 28(3), 440–446. https://doi.org/10.1016/j.neurobiolaging.2006.01.004
Article
PubMed
Google Scholar
Blake, M. G., & Boccia, M. M. (2018). Basal forebrain cholinergic system and memory. In Current Topics in Behavioral Neurosciences (Vol. 37, pp. 253–273). https://doi.org/10.1007/7854_2016_467
Blank, M., Guerim, L. D., Cordeiro, R. F., & Vianna, M. R. M. (2009). A one-trial inhibitory avoidance task to zebrafish: Rapid acquisition of an NMDA-dependent long-term memory. Neurobiology of Learning and Memory, 92(4), 529–534. https://www.sciencedirect.com/science/article/pii/S1074742709001385?via%3Dihub
Article
Google Scholar
Bossong, M. G., & Niesink, R. J. M. (2010). Adolescent brain maturation, the endogenous cannabinoid system and the neurobiology of cannabis-induced schizophrenia. Progress in Neurobiology, 92(3), 370–385. https://doi.org/10.1016/j.pneurobio.2010.06.010
Article
PubMed
Google Scholar
Boyce, M. S., Pitt, J., Northrup, J. M., Morehouse, A. T., Knopff, K. H., Cristescu, B., & Stenhouse, G. B. (2010). Temporal autocorrelation functions for movement rates from global positioning system radiotelemetry data. In Philosophical Transactions of the Royal Society B: Biological Sciences (Vol. 365, Issue 1550, pp. 2213–2219). Royal Society. https://doi.org/10.1098/rstb.2010.0080
Brisch, R., Saniotis, A., Wolf, R., Bielau, H., Bernstein, H. G., Steiner, J., Bogerts, B., Braun, K., Kumaratilake, J., Henneberg, M., & Gos, T. (2014). The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: Old fashioned, but still in vogue. Frontiers in Psychiatry, 5(APR). https://doi.org/10.3389/fpsyt.2014.00047
Brown, V. J., & Tait, D. S. (2014). Behavioral Flexibility: Attentional Shifting, Rule Switching, and Response Reversal. In Encyclopedia of Psychopharmacology (pp. 1–7). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-27772-6_340-2
Cash-Padgett, T., Sawa, A., & Jaaro-Peled, H. (2016). Increased stereotypy in conditional Cxcr4 knockout mice. Neuroscience Research, 105, 75–79. https://doi.org/10.1016/j.neures.2015.10.001
Article
PubMed
Google Scholar
Chen, K. C., Baxter, M. G., & Rodefer, J. S. (2004). Central blockade of muscarinic cholinergic receptors disrupts affective and attentional set-shifting. European Journal of Neuroscience, 20(4), 1081–1088. https://doi.org/10.1111/j.1460-9568.2004.03548.x
Article
Google Scholar
Cleal, M., & Parker, M. O. (2018). Moderate developmental alcohol exposure reduces repetitive alternation in a zebrafish model of fetal alcohol spectrum disorders. Neurotoxicology and Teratology. https://doi.org/10.1016/j.ntt.2018.09.001
Cognato de, G. P., Bortolotto, J. W., Blazina, A. R., Christoff, R. R., Lara, D. R., Vianna, M. R., & Bonan, C. D. (2012). Y-Maze memory task in zebrafish (Danio rerio): The role of glutamatergic and cholinergic systems on the acquisition and consolidation periods. Neurobiology of Learning and Memory, 98(4), 321–328. http://www.ncbi.nlm.nih.gov/pubmed/23044456
Article
Google Scholar
Conrad, C. D., Lupien, S. J., Thanasoulis, L. C., & McEwen, B. S. (1997). The effects of Type I and Type II corticosteroid receptor agonists on exploratory behavior and spatial memory in the Y-maze. Brain Research, 759(1), 76–83. https://doi.org/10.1016/S0006-8993(97)00236-9
Article
PubMed
Google Scholar
Cools, R., & D’Esposito, M. (2011). Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biological Psychiatry, 69(12), e113-25. https://doi.org/10.1016/j.biopsych.2011.03.028
Article
PubMed
PubMed Central
Google Scholar
Cope, Z. A., Powell, S. B., & Young, J. W. (2016). Modeling neurodevelopmental cognitive deficits in tasks with cross-species translational validity. Genes, Brain, and Behavior, 15(1), 27–44. https://doi.org/10.1111/gbb.12268
Article
PubMed
PubMed Central
Google Scholar
Craig, F., Margari, F., Legrottaglie, A. R., Palumbi, R., de Giambattista, C., & Margari, L. (2016). A review of executive function deficits in autism spectrum disorder and attention-deficit/hyperactivity disorder. Neuropsychiatric Disease and Treatment, 12, 1191–1202. https://doi.org/10.2147/NDT.S104620
Article
PubMed
PubMed Central
Google Scholar
Cunha, P. J., Nicastri, S., de Andrade, A. G., & Bolla, K. I. (2010). The frontal assessment battery (FAB) reveals neurocognitive dysfunction in substance-dependent individuals in distinct executive domains: Abstract reasoning, motor programming, and cognitive flexibility. Addictive Behaviors, 35(10), 875–881. https://doi.org/10.1016/j.addbeh.2010.05.005
Article
PubMed
Google Scholar
Darcet, F., Gardier, A. M., Gaillard, R., David, D. J., & Guilloux, J. P. (2016). Cognitive dysfunction in major depressive disorder. A translational review in animal models of the disease. Pharmaceuticals, 9(1). https://doi.org/10.3390/ph9010009
Day, M., Balci, F., Wan, H. I., Fox, G. B., Rutkowski, J. L., & Feuerstein, G. (2008). Cognitive endpoints as disease biomarkers: Optimizing the congruency of preclinical models to the clinic. Current Opinion in Investigational Drugs, 9(7), 696–706. https://www.researchgate.net/publication/5251891
PubMed
Google Scholar
Deacon, R. M. J., Nicholas, J., & Rawlins, P. (2006a). T-maze alternation in the rodent. NATURE PROTOCOLS, 1(7). https://doi.org/10.1038/nprot.2006.2
Deacon, R. M. J., Nick, J., & Rawlins, P. (2006b). T-maze alternation in the rodent. Nature Protocols, 1(1), 7–12. https://doi.org/10.1038/nprot.2006.2
Article
PubMed
Google Scholar
Demetriou, E. A., DeMayo, M. M., & Guastella, A. J. (2019). Executive Function in Autism Spectrum Disorder: History, Theoretical Models, Empirical Findings, and Potential as an Endophenotype. Frontiers in Psychiatry, 10, 753. https://doi.org/10.3389/fpsyt.2019.00753
Article
PubMed
PubMed Central
Google Scholar
El-Ghundi, M., O’Dowd, B. F., & George, S. R. (2007). Insights into the Role of Dopamine Receptor Systems in Learning and Memory. Reviews in the Neurosciences, 18(1), 37–66. https://doi.org/10.1515/REVNEURO.2007.18.1.37
Article
PubMed
Google Scholar
Ellis, J. R., Ellis, K. A., Bartholomeusz, C. F., Harrison, B. J., Wesnes, K. A., Erskine, F. F., Vitetta, L., & Nathan, P. J. (2005). Muscarinic and nicotinic receptors synergistically modulate working memory and attention in humans. The International Journal of Neuropsychopharmacology, 9(02), 1751. Ellis JR, Ellis KA, Bartholomeusz CF, et al. https://doi.org/10.1017/S1461145705005407
Article
Google Scholar
Ellis, K. A., & Nathan, P. J. (2001). The pharmacology of human working memory. In International Journal of Neuropsychopharmacology (Vol. 4). https://academic.oup.com/ijnp/article-abstract/4/3/299/976328
Feigin, V. L., Nichols, E., Alam, T., Bannick, M. S., Beghi, E., Blake, N., Culpepper, W. J., Dorsey, E. R., Elbaz, A., Ellenbogen, R. G., Fisher, J. L., Fitzmaurice, C., Giussani, G., Glennie, L., James, S. L., Johnson, C. O., Kassebaum, N. J., Logroscino, G., Marin, B., … Vos, T. (2019). Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(5), 459–480. https://doi.org/10.1016/S1474-4422(18)30499-X
Article
Google Scholar
Fontana, B. D., Cleal, M., Clay, J. M., & Parker, M. O. (2019a). Zebrafish (Danio rerio) behavioral laterality predicts increased short-term avoidance memory but not stress-reactivity responses. Animal Cognition, 22(6), 1051–1061. https://doi.org/10.1007/s10071-019-01296-9
Article
PubMed
PubMed Central
Google Scholar
Fontana, B. D., Cleal, M., & Parker, M. O. (2019b). Female adult zebrafish (Danio rerio) show higher levels of anxiety-like behavior than males, but do not differ in learning and memory capacity. European Journal of Neuroscience, ejn.14588. https://doi.org/10.1111/ejn.14588
Fontana, B. D., Mezzomo, N. J., Kalueff, A. V., & Rosemberg, D. B. (2018). The developing utility of zebrafish models of neurological and neuropsychiatric disorders: A critical review. Experimental Neurology, 299, 157–171. https://www.sciencedirect.com/science/article/pii/S0014488617302467
Article
Google Scholar
Francis, P. T. (2005). The interplay of neurotransmitters in Alzheimer’s disease. CNS Spectrums, 10(11 SUPPL. 18), 6–9. https://doi.org/10.1017/s1092852900014164
Article
PubMed
Google Scholar
Frith, C. D., & Done, A. D. J. (1983). Stereotyped responding by schizophrenic patients on a two-choice guessing task. Psychological Medicine, 13, 779–786. https://doi.org/10.1017/S0033291700051485
Article
PubMed
Google Scholar
Gerlai, R. (1998). A new continuous alternation task in T-maze detects hippocampal dysfunction in mice: A strain comparison and lesion study. Behavioural Brain Research, 95(1), 91–101. https://doi.org/10.1016/S0166-4328(97)00214-3
Article
PubMed
Google Scholar
Giraldo-Chica, M., Rogers, B. P., Damon, S. M., Landman, B. A., & Woodward, N. D. (2018). Prefrontal-Thalamic Anatomical Connectivity and Executive Cognitive Function in Schizophrenia. Biological Psychiatry, 83(6), 509–517. https://doi.org/10.1016/j.biopsych.2017.09.022
Article
PubMed
Google Scholar
Gould, T.J. (2010). Addiction and cognition. Addiction Science & Clinical Practice, 5, 4–14.
Google Scholar
Granon, S., Poucet, B., Thinus-Blanc, C., Changeux, J.-P., & Vidal, C. (1995). Nicotinic and muscarinic receptors in the rat prefrontal cortex: Differential roles in working memory, response selection and effortful processing. Psychopharmacology, 119(2), 139–144. https://doi.org/10.1007/BF02246154
Article
PubMed
Google Scholar
Granon, Sylvie, Passetti, F., Thomas, K. L., Dalley, J. W., Everitt, B. J., & Robbins, T. W. (2000). Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. Journal of Neuroscience, 20(3), 1208–1215. https://doi.org/10.1523/jneurosci.20-03-01208.2000
Article
PubMed
Google Scholar
Grecian, W. J., Lane, J. V., Michelot, T., Wade, H. M., & Hamer, K. C. (2018). Understanding the ontogeny of foraging behaviour: insights from combining marine predator bio-logging with satellite-derived oceanography in hidden Markov models. Journal of The Royal Society Interface, 15(143), 20180084. https://doi.org/10.1098/rsif.2018.0084
Article
PubMed Central
Google Scholar
Gross, A. N., Engel, A. K. J., Richter, S. H., Garner, J. P., & Würbel, H. (2011). Cage-induced stereotypies in female ICR CD-1 mice do not correlate with recurrent perseveration. Behavioural Brain Research, 216(2), 613–620. https://doi.org/10.1016/J.BBR.2010.09.003
Article
PubMed
Google Scholar
Guarino, A., Favieri, F., Boncompagni, I., Agostini, F., Cantone, M., & Casagrande, M. (2019). Executive functions in Alzheimer disease: A systematic review. Frontiers in Aging Neuroscience, 10. https://doi.org/10.3389/fnagi.2018.00437
Hammar, Å., & Årdal, G. (2009). Cognitive functioning in major depression - A summary. Frontiers in Human Neuroscience, 3(SEP). https://doi.org/10.3389/neuro.09.026.2009
Handra, C., Coman, O. A., Coman, L., Enache, T., Stoleru, S., Sorescu, A. M., Ghită, I., & Fulga, I. (2019). The connection between different neurotransmitters involved in cognitive processes. In Farmacia (Vol. 67, Issue 2, pp. 193–201). 10.31925/farmacia.2019.2.1
Harro, J. (2019). Animal models of depression: pros and cons. Cell and Tissue Research, 377(1), 5–20. https://doi.org/10.1007/s00441-018-2973-0
Article
PubMed
Google Scholar
Herbert, C. E., & Hughes, R. N. (2009). A comparison of 1-benzylpiperazine and methamphetamine in their acute effects on anxiety-related behavior of hooded rats. Pharmacology Biochemistry and Behavior, 92(2), 243–250. https://doi.org/10.1016/j.pbb.2008.12.003
Article
Google Scholar
Heredia-López, F. J., Álvarez-Cervera, F. J., Collí-Alfaro, J. G., Bata-García, J. L., Arankowsky-Sandoval, G., & Góngora-Alfaro, J. L. (2016). An automated Y-maze based on a reduced instruction set computer (RISC) microcontroller for the assessment of continuous spontaneous alternation in rats. Behavior Research Methods, 48(4), 1631–1643. https://doi.org/10.3758/s13428-015-0674-0
Article
PubMed
Google Scholar
Herman, M. A., & Roberto, M. (2015). The addicted brain: understanding the neurophysiological mechanisms of addictive disorders. Frontiers in Integrative Neuroscience, 9(March), 18. https://doi.org/10.3389/fnint.2015.00018
Article
PubMed
PubMed Central
Google Scholar
Hindle, J. V. (2010). Ageing, neurodegeneration and Parkinson’s disease. Age and Ageing, 39(2), 156–161. https://doi.org/10.1093/ageing/afp223
Article
PubMed
Google Scholar
Hirotsu, I., Hori, N., Katsuda, N., & Ishihara, T. (1989). Effect of anticholinergic drug on long-term potentiation in rat hippocampal slices. In Brain Research (Vol. 482, Issue 1). https://doi.org/10.1016/0006-8993(89)90561-1
Hochberg, J., & Attneave, F. (1961). Applications of Information Theory to Psychology: A Summary of Basic Concepts, Methods, and Results. The American Journal of Psychology, 74(2), 319. https://doi.org/10.2307/1419430
Article
Google Scholar
Hollis, C. (1995). Child and adolescent (juvenile onset) schizophrenia. A case control study of premorbid developmental impairments. British Journal of Psychiatry, 166(APR.), 489–495. https://doi.org/10.1192/bjp.166.4.489
Homberg, J. R. (2013). Measuring behaviour in rodents: Towards translational neuropsychiatric research. Behavioural Brain Research, 236(1), 295–306. https://doi.org/10.1016/j.bbr.2012.09.005
Article
PubMed
Google Scholar
Horzmann, K., & Freeman, J. (2016). Zebrafish Get Connected: Investigating Neurotransmission Targets and Alterations in Chemical Toxicity. Toxics, 4(3), 19. https://doi.org/10.3390/toxics4030019
Article
PubMed
PubMed Central
Google Scholar
Hughes, R. N. (2004). The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory. Neuroscience & Biobehavioral Reviews, 28(5), 497–505. https://doi.org/10.1016/J.NEUBIOREV.2004.06.006
Article
Google Scholar
Humphries, N. E., Queiroz, N., Dyer, J. R. M., Pade, N. G., Musyl, M. K., Schaefer, K. M., Fuller, D. W., Brunnschweiler, J. M., Doyle, T. K., Houghton, J. D. R., Hays, G. C., Jones, C. S., Noble, L. R., Wearmouth, V. J., Southall, E. J., & Sims, D. W. (2010). Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature, 465(7301), 1066–1069. https://doi.org/10.1038/nature09116
Article
PubMed
Google Scholar
Jongsma, H. E., Turner, C., Kirkbride, J. B., & Jones, P. B. (2019). International incidence of psychotic disorders, 2002–17: a systematic review and meta-analysis. The Lancet Public Health, 4(5), e229–e244. https://doi.org/10.1016/S2468-2667(19)30056-8
Article
PubMed
PubMed Central
Google Scholar
King, D. L., & Arendash, G. W. (2002). Behavioral characterization of the Tg2576 transgenic model of Alzheimer’s disease through 19 months. Physiology & Behavior, 75(5), 627–642. https://doi.org/10.1016/S0031-9384(02)00639-X
Article
Google Scholar
Klanker, M., Feenstra, M., & Denys, D. (2013). Dopaminergic control of cognitive flexibility in humans and animals. Frontiers in Neuroscience, 7, 201. https://doi.org/10.3389/fnins.2013.00201
Article
PubMed
PubMed Central
Google Scholar
Koerts, J., van Beilen, M., Tucha, O., Leenders, K. L., & Brouwer, W. H. (2011). Executive functioning in daily life in Parkinson’s disease: Initiative, planning and multi-task performance. PLoS ONE, 6(12). https://doi.org/10.1371/journal.pone.0029254
Kotagale, N., Rahmatkar, S., Chauragade, S., Dixit, M., Umekar, M., Chopde, C., & Taksande, B. (2020). Involvement of hippocampal agmatine in β1-42 amyloid induced memory impairment, neuroinflammation and BDNF signaling disruption in mice. NeuroToxicology, 80, 1–11. https://doi.org/10.1016/j.neuro.2020.06.002
Article
PubMed
Google Scholar
Kumar, H., Sharma, B. M., & Sharma, B. (2015). Benefits of agomelatine in behavioral, neurochemical and blood brain barrier alterations in prenatal valproic acid induced autism spectrum disorder. Neurochemistry International, 91, 34–45. https://doi.org/10.1016/j.neuint.2015.10.007
Article
PubMed
Google Scholar
Kwak, S., Huh, N., Seo, J. S., Lee, J. E., Han, P. L., & Jung, M. W. (2014). Role of dopamine D2 receptors in optimizing choice strategy in a dynamic and uncertain environment. Frontiers in Behavioral Neuroscience, 8(October). https://doi.org/10.3389/fnbeh.2014.00368
Lainiola, M., Procaccini, C., & Linden, A.-M. (2014). mGluR3 knockout mice show a working memory defect and an enhanced response to MK-801 in the T- and Y-maze cognitive tests. Behavioural Brain Research, 266, 94–103. https://doi.org/10.1016/J.BBR.2014.03.008
Article
PubMed
Google Scholar
Lalonde, R. (2002). The neurobiological basis of spontaneous alternation. Neuroscience & Biobehavioral Reviews, 26(1), 91–104. https://doi.org/10.1016/S0149-7634(01)00041-0
Article
Google Scholar
Li, C. T., Yang, K. C., & Lin, W. C. (2019). Glutamatergic dysfunction and glutamatergic compounds for major psychiatric disorders: Evidence from clinical neuroimaging studies. Frontiers in Psychiatry, 10(JAN), 767. https://doi.org/10.3389/fpsyt.2018.00767
Lisman, J. E., Fellous, J. M., & Wang, X. J. (1998). A role for NMDA-receptor channels in working memory. Nature Neuroscience, 1(4), 273–275. https://doi.org/10.1038/1086
Article
PubMed
Google Scholar
Lobellova, V., Entlerova, M., Svojanovska, B., Hatalova, H., Prokopova, I., Petrasek, T., Vales, K., Kubik, S., Fajnerova, I., & Stuchlik, A. (2013). Two learning tasks provide evidence for disrupted behavioural flexibility in an animal model of schizophrenia-like behaviour induced by acute MK-801: A dose-response study. Behavioural Brain Research, 246, 55–62. https://doi.org/10.1016/j.bbr.2013.03.006
Article
PubMed
Google Scholar
Ma, M. X., Chen, Y. M., He, J., Zeng, T., & Wang, J. H. (2007). Effects of morphine and its withdrawal on Y-maze spatial recognition memory in mice. Neuroscience, 147(4), 1059–1065. https://doi.org/10.1016/J.NEUROSCIENCE.2007.05.020
Article
PubMed
Google Scholar
Markou, A., Chiamulera, C., Geyer, M. A., Tricklebank, M., & Steckler, T. (2009). Removing Obstacles in Neuroscience Drug Discovery: The Future Path for Animal Models. Neuropsychopharmacology, 34(1), 74–89. https://doi.org/10.1038/npp.2008.173
Article
PubMed
Google Scholar
Meehl, P. E. (1993). Selected Philosophical and Methodological Papers. American Journal of Psychiatry, 150(10), 1554–1555.
Article
Google Scholar
Miedel, C. J., Patton, J. M., Miedel, A. N., Miedel, E. S., & Levenson, J. M. (2017). Assessment of spontaneous alternation, novel object recognition and limb clasping in transgenic mouse models of amyloid-β and tau neuropathology. Journal of Visualized Experiments, 2017(123). https://doi.org/10.3791/55523
Murueta-Goyena, A. L., Odrioizola, A. B., Gargiulo, P. A., & Sánchez, J. V. L. (2017). Neuropathological background of mk-801 for inducing murine model of schizophrenia. In Psychiatry and Neuroscience Update (Vol. 2, pp. 337–354). Springer International Publishing. https://doi.org/10.1007/978-3-319-53126-7_25
Mwaffo, V., Anderson, R. P., Butail, S., & Porfiri, M. (2015). A jump persistent turning walker to model zebrafish locomotion. Journal of the Royal Society Interface, 12(102). https://doi.org/10.1098/rsif.2014.0884
Myhrer, T. (2003). Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks. Brain Research Reviews, 41(2–3), 268–287. https://doi.org/10.1016/S0165-0173(02)00268-0
Article
PubMed
Google Scholar
Nam, R.-H., Kim, W., & Lee, C.-J. (2004). NMDA receptor-dependent long-term potentiation in the telencephalon of the zebrafish. Neuroscience Letters, 370(2–3), 248–251. https://doi.org/10.1016/J.NEULET.2004.08.037
Article
PubMed
Google Scholar
Namboodiri, V. M. K., Levy, J. M., Mihalas, S., Sims, D. W., & Shuler, M. G. H. (2016). Rationalizing spatial exploration patterns of wild animals and humans through a temporal discounting framework. Proceedings of the National Academy of Sciences, 113(31), 8747–8752. https://doi.org/10.1073/PNAS.1601664113
Article
Google Scholar
Ng, M.-C., Hsu, C.-P., Wu, Y.-J., Wu, S.-Y., Yang, Y.-L., & Lu, K.-T. (2012). Effect of MK-801-induced impairment of inhibitory avoidance learning in zebrafish via inactivation of extracellular signal-regulated kinase (ERK) in telencephalon. Fish Physiology and Biochemistry, 38(4), 1099–1106. https://doi.org/10.1007/s10695-011-9595-8
Article
PubMed
Google Scholar
Nicoll, R. A. (2017). A Brief History of Long-Term Potentiation. In Neuron (Vol. 93, Issue 2, pp. 281–290). https://doi.org/10.1016/j.neuron.2016.12.015
Orellana, G., & Slachevsky, A. (2013). Executive functioning in schizophrenia. Frontiers in Psychiatry, 4(JUN). https://doi.org/10.3389/fpsyt.2013.00035
Pal, A., & Prakash, P. (2017). Practical Time Series Analysis: Master Time Series Data Processing, Visualization, and Modeling using Python. In Packt Publishing. Packt Publishing Ltd, 2017.
Parker, M. M. O., & Brennan, C. C. H. (2012). Zebrafish (Danio rerio) models of substance abuse: Harnessing the capabilities. Behaviour, 149(10–12), 1037–1062. https://doi.org/10.1163/1568539X-00003010
Article
Google Scholar
Paul, C. M., Magda, G., & Abel, S. (2009). Spatial memory: Theoretical basis and comparative review on experimental methods in rodents. Behavioural Brain Research, 203(2), 151–164. https://doi.org/10.1016/j.bbr.2009.05.022
Article
PubMed
Google Scholar
Paulus, M. P., Geyer, M. A., & Braff, D. L. (1999). Long-range correlations in choice sequences of schizophrenic patients. Schizophrenia Research, 35(1), 69–75. https://doi.org/10.1016/S0920-9964(98)00108-X
Article
PubMed
Google Scholar
Pittenger, C. (2013). Disorders of memory and plasticity in psychiatric disease. Dialogues in Clinical Neuroscience, 15(4), 455–463. http://www.ncbi.nlm.nih.gov/pubmed/24459412
Article
Google Scholar
Presser, S., Couper, M. P., Lessler, J. T., Martin, E., Rothgeb, J. M., Bureau, U. S. C., & Singer, E. (2004). METHODS FOR TESTING AND EVALUATING SURVEY QUESTIONS University of Maryland University of Michigan U. S. Census Bureau Office for National Statistics University of Michigan. Public Opinion, 68(1), 109–130. https://doi.org/10.1093/poq
Article
Google Scholar
Ragozzino, M. E. (2002). The effects of dopamine D1 receptor blockade in the prelimbic-infralimbic areas on behavioral flexibility. Learning and Memory, 9(1), 18–28. https://doi.org/10.1101/lm.45802
Article
PubMed
Google Scholar
Ragozzino, M. E., Jih, J., & Tzavos, A. (2002). Involvement of the dorsomedial striatum in behavioral flexibility: Role of muscarinic cholinergic receptors. Brain Research, 953(1–2), 205–214. https://doi.org/10.1016/S0006-8993(02)03287-0
Article
PubMed
Google Scholar
Reynolds, A. M. (2010). Bridging the gulf between correlated random walks and Lévy walks: Autocorrelation as a source of Lévy walk movement patterns. Journal of the Royal Society Interface, 7(53), 1753–1758. https://doi.org/10.1098/rsif.2010.0292
Article
PubMed Central
Google Scholar
Robinson, P. M. (2003). Time series with long memory. In Advanced texts in econometrics. https://books.google.co.uk/books?hl=en&lr=&id=w8HPcMJsk-cC&oi=fnd&pg=PA3&dq=time+series+analysis+memory&ots=nRuirElbNw&sig=UVimMeLj21YdNxBv-zUSdomZiCk&redir_esc=y#v=onepage&q=time series analysis memory&f=false
Rolstad, S., Adler, J., & Rydén, A. (2011). Response burden and questionnaire length: Is shorter better? A review and meta-analysis. Value in Health, 14(8), 1101–1108. https://doi.org/10.1016/j.jval.2011.06.003
Article
PubMed
Google Scholar
Scerbina, T., Chatterjee, D., & Gerlai, R. (2012). Dopamine receptor antagonism disrupts social preference in zebrafish: a strain comparison study. Amino Acids, 43(5), 2059–2072. https://doi.org/10.1007/s00726-012-1284-0
Article
PubMed
PubMed Central
Google Scholar
Schmitt, W. B., Deacon, R. M. J., Seeburg, P. H., Rawlins, J. N. P., & Bannerman, D. M. (2003). A within-subjects, within-task demonstration of intact spatial reference memory and impaired spatial working memory in glutamate receptor-A-deficient mice. Journal of Neuroscience, 23(9), 3953–3958. https://doi.org/10.1523/JNEUROSCI.23-09-03953.2003
Article
PubMed
Google Scholar
Shapiro, M. L., & Caramanos, Z. (1990). NMDA antagonist MK-801 impairs acquisition but not performance of spatial working and reference memory. Psychobiology, 18(2), 231–243. https://doi.org/10.3758/BF03327232
Article
Google Scholar
Sharma, S., Rakoczy, S., & Brown-Borg, H. (2010). Assessment of spatial memory in mice. Life Sciences, 87(17–18), 521–536. https://doi.org/10.1016/j.lfs.2010.09.004
Article
PubMed
PubMed Central
Google Scholar
Sims, D. W., Southall, E. J., Humphries, N. E., Hays, G. C., Bradshaw, C. J. A., Pitchford, J. W., James, A., Ahmed, M. Z., Brierley, A. S., Hindell, M. A., Morritt, D., Musyl, M. K., Righton, D., Shepard, E. L. C., Wearmouth, V. J., Wilson, R. P., Witt, M. J., & Metcalfe, J. D. (2008). Scaling laws of marine predator search behaviour. Nature, 451(7182), 1098–1102. https://doi.org/10.1038/nature06518
Article
PubMed
Google Scholar
Sison, M., & Gerlai, R. (2011). Associative learning performance is impaired in zebrafish (Danio rerio) by the NMDA-R antagonist MK-801. Neurobiology of Learning and Memory, 96(2), 230–237. https://linkinghub.elsevier.com/retrieve/pii/S1074742711000906
Article
Google Scholar
Sneddon, L. U., Halsey, L. G., & Bury, N. R. (2017). Considering aspects of the 3Rs principles within experimental animal biology. Journal of Experimental Biology, 220(17), 3007–3016. https://doi.org/10.1242/jeb.147058
Article
Google Scholar
Snyder, H. R. (2013). Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: A meta-analysis and review. Psychological Bulletin, 139(1), 81–132. https://doi.org/10.1037/a0028727
Article
PubMed
Google Scholar
Soibam, B., Mann, M., Liu, L., Tran, J., Lobaina, M., Kang, Y. Y., Gunaratne, G. H., Pletcher, S., & Roman, G. (2012). Open-field arena boundary is a primary object of exploration for Drosophila. Brain and Behavior, 2(2), 97–108. https://doi.org/10.1002/brb3.36
Article
PubMed
PubMed Central
Google Scholar
Sokolenko, E., Nithianantharajah, J., & Jones, N. C. (2020). MK-801 impairs working memory on the Trial-Unique Nonmatch-to-Location test in mice, but this is not exclusively mediated by NMDA receptors on PV+ interneurons or forebrain pyramidal cells. Neuropharmacology, 171. https://doi.org/10.1016/j.neuropharm.2020.108103
Stadnytska, T., & Werner, J. (2006). Sample size and accuracy of estimation of the fractional differencing parameter. Methodology, 2(4), 135–141. https://doi.org/10.1027/1614-2241.2.4.135
Article
Google Scholar
Stewart, S., Cacucci, F., & Lever, C. (2011). Which memory task for my mouse? A systematic review of spatial memory performance in the Tg2576 alzheimer’s mouse model. Journal of Alzheimer’s Disease, 26(1), 105–126. https://doi.org/10.3233/JAD-2011-101827
Article
PubMed
Google Scholar
Stroe-Kunold, E., Stadnytsk, T., Werner, J., & Braun, S. (2009). Estimating long-range dependence in time series: An evaluation of estimators implemented in R. Behavior Research Methods, 41(3), 909–923. https://doi.org/10.3758/BRM.41.3.909
Article
PubMed
Google Scholar
Svoboda, J., Stankova, A., Entlerova, M., & Stuchlik, A. (2015). Acute administration of MK-801 in an animal model of psychosis in rats interferes with cognitively demanding forms of behavioral flexibility on a rotating arena. Frontiers in Behavioral Neuroscience, 9(APR), 75. https://doi.org/10.3389/fnbeh.2015.00075
Tannenbaum, J., & Bennett, B. T. (2015). Russell and Burch’s 3Rs then and now: The need for clarity in definition and purpose. Journal of the American Association for Laboratory Animal Science, 54(2), 120–132.
PubMed
PubMed Central
Google Scholar
van der Staay, F. J., Rutten, K., Erb, C., & Blokland, A. (2011). Effects of the cognition impairer MK-801 on learning and memory in mice and rats. Behavioural Brain Research, 220(1), 215–229. https://doi.org/10.1016/J.BBR.2011.01.052
Article
PubMed
Google Scholar
Winter, S., Dieckmann, M., & Schwabe, K. (2009). Dopamine in the prefrontal cortex regulates rats behavioral flexibility to changing reward value. Behavioural Brain Research, 198(1), 206–213. https://doi.org/10.1016/j.bbr.2008.10.040
Article
PubMed
Google Scholar
Wong, A. H. C., & Josselyn, S. A. (2016). Caution when diagnosing your mouse with schizophrenia: The use and misuse of model animals for understanding psychiatric disorders. Biological Psychiatry, 79(1), 32–38. https://doi.org/10.1016/j.biopsych.2015.04.023
Article
PubMed
Google Scholar
Young, J. W., Powell, S. B., Risbrough, V., Marston, H. M., & Geyer, M. A. (2009). Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. Pharmacology and Therapeutics, 122(2), 150–202. https://doi.org/10.1016/j.pharmthera.2009.02.004
Article
PubMed
Google Scholar