Advertisement

The Semantic Librarian: A search engine built from vector-space models of semantics

  • Harinder AujlaEmail author
  • Matthew J. C. Crump
  • Matthew T. Cook
  • Randall K. Jamieson
Article

Abstract

Psychologists have made substantial progress at developing empirically validated formal expressions of how people perceive, learn, remember, think, and know. In this article, we present an academic search engine for cognitive psychology that leverages computational expressions of human cognition (vector-space models of semantics) to represent and find articles in the psychological record. The method shows how psychological theory can be used to inform and aid the design of psychologically intuitive computer interfaces.

Keywords

Cognitive computing Document representation and retrieval Search engine BEAGLE Computational linguistics 

Notes

References

  1. Aborn, M., & Rubenstein, H. (1952). Information theory and immediate recall. Journal of Experimental Psychology, 44, 260–266.CrossRefGoogle Scholar
  2. Anderson, J. R. (2013). ACT’s propositional network. In Language, memory, and thought (pp. 146–181). Psychology Press.Google Scholar
  3. Bedi, G., Carrillo, F., Cecchi, G. A., Slezak, D. F., Sigman, M., Mota, N. B., . . . Corcoran, C. M. (2015). Automated analysis of free speech predicts psychosis onset in high-risk youths. NPJ Schizophrenia, 1, 15030.  https://doi.org/10.1038/npjschz.2015.30 CrossRefGoogle Scholar
  4. Bontcheva, K., Tablan, V., & Cunningham, H. (2014). Semantic search over documents and ontologies. In N. Ferro (Ed.), Bridging between information retrieval and databases (pp. 31–53). Berlin: Springer.CrossRefGoogle Scholar
  5. Brooks, R. (1991). New approaches to robotics. Science, 253, 1227–1232.CrossRefGoogle Scholar
  6. Brosowsky, N., Crump, M. J. C. (2018). You should hate this movie! Detecting concealed attitudes of online persuaders. Poster presented at the Annual Meeting of the Psychonomic Society, New Orleans.Google Scholar
  7. Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82, 407–428.  https://doi.org/10.1037/0033-295X.82.6.407 CrossRefGoogle Scholar
  8. Collins, A. M., & Quillian, M. R. (1969). Retrieval time from semantic memory. Journal of Verbal Learning and Verbal Behavior, 8, 240–247.CrossRefGoogle Scholar
  9. Cook, M. (2018). The mathematics of clinical diagnosis: Cognitively-inspired computational psychiatry (Master’s thesis). University of Manitoba, Winnipeg, MB.Google Scholar
  10. Cutting, J. E. (1983). Four assumptions about invariance in perception. Journal of Experimental Psychology: Human Perception and Performance, 9, 310–317.  https://doi.org/10.1037/0096-1523.9.2.310 Google Scholar
  11. de Saussure, F. (2011). Course in general linguistics (P. Meisel & H. Saussy, Eds.; W. Baskin, Trans.). New York: Columbia University Press.Google Scholar
  12. Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., & Harshman, R. A. (1990). Indexing by Latent Semantic Analysis. Journal of the American Society for Information Science, 41, 391–407.CrossRefGoogle Scholar
  13. Firth, J. R. (1957). A synopsis of linguistic theory, 1930–1955. In Philological Society (Great Britain) (Ed.), Studies in linguistic analysis. Oxford, UK: Blackwell.Google Scholar
  14. Foltz, P. W., Laham, D., & Landauer, T. K. (1999). The intelligent essay assessor: Applications to educational technology. Interactive Multimedia Electronic Journal of Computer-Enhanced Learning, 1, 939–944.Google Scholar
  15. Friendly, M., Franklin, P. E., Hoffman, D., & Rubin, D. C. (1982). The Toronto Word Pool: Norms for imagery, concreteness, orthographic variables, and grammatical usage for 1,080 words. Behavior Research Methods & Instrumentation, 14, 375–399.  https://doi.org/10.3758/BF03203275 CrossRefGoogle Scholar
  16. Gilhooly, K. J., & Logie, R. H. (1980). Age-of-acquisition, imagery, concreteness, familiarity, and ambiguity measures for 1,944 words. Behavior Research Methods & Instrumentation, 12, 395–427.  https://doi.org/10.3758/BF03201693 CrossRefGoogle Scholar
  17. Graesser, A. C. (2011). Learning, thinking, and emoting with discourse technologies. American Psychologist, 66, 746–757.CrossRefGoogle Scholar
  18. Green, C. D. (2016). A digital future for the history of psychology? History of Psychology, 19, 209–219.CrossRefGoogle Scholar
  19. Green, C. D., & Feinerer, I. (2015). The evolution of American Journal of Psychology, 1887–1903: A network investigation. American Journal of Psychology, 128, 387–401.CrossRefGoogle Scholar
  20. Green, C. D., Feinerer, I., & Burman, J. T. (2013). Beyond the schools of psychology 1: Digital analysis of Psychological Review, 1894–1903. Journal of the History of the Behavioral Sciences, 49, 167–189.CrossRefGoogle Scholar
  21. Green, C. D., Feinerer, I., & Burman, J. T. (2014). Beyond the schools of psychology 2: Digital analysis of Psychological Review, 1904–1923. Journal of the History of the Behavioral Sciences, 50, 249–279.CrossRefGoogle Scholar
  22. Green, C. D., Feinerer, I., & Burman, J. T. (2015a). Searching for the structure of early American psychology: Networking Psychological Review, 1894–1908. History of Psychology, 18, 15–31.CrossRefGoogle Scholar
  23. Green, C. D., Feinerer, I., & Burman, J. T. (2015b). Searching for the structure of early American psychology: Networking Psychological Review, 1909–1923. History of Psychology, 18, 196–204.CrossRefGoogle Scholar
  24. Johns, B. T., & Jamieson, R. K. (2018). A large-scale analysis of variance in written language. Cognitive Science, 42, 1360–1374.  https://doi.org/10.1111/cogs.12583 CrossRefGoogle Scholar
  25. Johns, B. T., Taler, V., Pisoni, D. B., Farlow, M. R., Hake, A. M., Kareken, D. A., Unverzagt, F. R., & Jones, M. N. (2018). Cognitive modeling as an interface between brain and behavior: Measuring the semantic decline in mild cognitive impairment. Canadian Journal of Experimental Psychology, 72, 117–126.  https://doi.org/10.1037/cep0000132 CrossRefGoogle Scholar
  26. Jones, M. N., Kintsch, W., & Mewhort, D. J. K. (2006). High-dimensional semantic space accounts of priming. Journal of Memory and Language, 55, 534–552.  https://doi.org/10.1016/j.jml.2006.07.003 CrossRefGoogle Scholar
  27. Jones, M. N., & Mewhort, D. J. K. (2007). Representing word meaning and order information in a composite holographic lexicon. Psychological Review, 114, 1–37.  https://doi.org/10.1037/0033-295X.114.1.1 CrossRefGoogle Scholar
  28. Kanerva, P. (1994). The spatter code for encoding concepts at many levels. In International Conference on Artificial Neural Networks (pp. 226–229). London: Springer.Google Scholar
  29. Kwantes, P. J., Derbentseva, N., Lam, Q., Vartanian, O., & Marmurek, H. H. (2016). Assessing the Big Five personality traits with latent semantic analysis. Personality and Individual Differences, 102, 229–233.CrossRefGoogle Scholar
  30. Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104, 211–240.  https://doi.org/10.1037/0033-295X.104.2.211 CrossRefGoogle Scholar
  31. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444.CrossRefGoogle Scholar
  32. Moretti, F. (2005). Graphs, maps, trees: Abstract models for literary history. New York: Verso.Google Scholar
  33. Murdock, B. B. (1995). Developing TODAM: Three models for serial-order information. Memory & Cognition, 23, 631–645.  https://doi.org/10.3758/BF03197264 CrossRefGoogle Scholar
  34. Murdock, B. B. (1997). Context and mediators in a theory of distributed associative memory (TODAM2). Psychological Review, 104, 839–862.  https://doi.org/10.1037/0033-295X.104.4.839 CrossRefGoogle Scholar
  35. Murdock, B. B., Jr. (1982). A theory for the storage and retrieval of item and associative information. Psychological Review, 89, 609–626.  https://doi.org/10.1037/0033-295X.89.6.609 CrossRefGoogle Scholar
  36. Murdock, B. B., Jr. (1983). A distributed memory model for serial-order information. Psychological Review, 90, 316–338.CrossRefGoogle Scholar
  37. Osgood, C. E. (1952). The nature and measurement of meaning. Psychological Review, 49, 197–237.  https://doi.org/10.1037/h0055737 Google Scholar
  38. Plate, T. A. (1995). Holographic reduced representations. IEEE Transactions on Neural Networks, 6, 623–641.CrossRefGoogle Scholar
  39. Reber, A. S. (1989). Implicit learning and tacit knowledge. Journal of Experimental Psychology: General, 118, 219–235.  https://doi.org/10.1037/0096-3445.118.3.219 CrossRefGoogle Scholar
  40. Recchia, G., Sahlgren, M., Kanerva, P., & Jones, M. N. (2015). Encoding sequential information in semantic space models: Comparing holographic reduced representation and random permutation. Computational Intelligence and Neuroscience, 2015, 986574.  https://doi.org/10.1155/2015/986574 CrossRefGoogle Scholar
  41. Roscoe, R. D., Allen, L. K., Cai, Z., Weston, J. L., Crossley, S. A., & McNamara, D. S. (2014). The writing pal intelligent tutoring system: Usability testing and development. Computers and Composition, 34, 39–59.CrossRefGoogle Scholar
  42. Roscoe, R. D, & McNamara, D. S. (2013). Writing pal: Feasibility of an intelligent writing strategy tutor in the high school classroom. Journal of Educational Psychology 105, 1010–1025.CrossRefGoogle Scholar
  43. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65, 386–408.  https://doi.org/10.1037/h0042519 CrossRefGoogle Scholar
  44. Rubin, D. C., & Friendly, M. (1986). Predicting which words get recalled: Measures of free recall, availability, goodness, emotionality, and pronounceability for 925 nouns. Memory & Cognition, 14, 79–94.CrossRefGoogle Scholar
  45. Rubin, T., Koyejo, O., Jones, M. N., & Yarkoni, T. (2016). Generalized correspondence-LDA models (GC-LDA) for identifying functional regions in the brain. In D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, & R. Garnett (Eds.), Advances in neural information processing systems (pp. 1126–1134). Red Hook: Curran Associates.Google Scholar
  46. Rubin, T. N., Koyejo, O., Gorgolewski, K. J., Jones, M. N., Poldrack, R. A., & Yarkoni, T. (2017). Decoding brain activity using a large-scale probabilistic functionalanatomical atlas of human cognition. PLoS Computational Biology, 13, e1005649.  https://doi.org/10.1371/journal.pcbi.1005649 CrossRefGoogle Scholar
  47. Rumelhart, D. E., Hinton, G. E., & McClelland, J. L. (1986). A general framework for parallel distributed processing. In D. E. Rumelhart, J. L. McClelland, & the PDP Research Group (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 1, pp. 45–76). Cambridge, MA: MIT Press.Google Scholar
  48. Sahlgren, M., Holst, A., & Kanerva, P. (2008). Permutations as a means to encode order in word space. In B. C. Love, K. McRae, & V. M. Sloutsky (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society (pp. 1300–1305). Austin: Cognitive Science Society.Google Scholar
  49. Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D. P., Fricker, M. D., … Nakagaki, T. (2010). Rules for biologically inspired adaptive network design. Science, 327, 439–442.CrossRefGoogle Scholar
  50. Toglia, M. P., & Battig, W. F. (1978). Handbook of semantic word norms. Hillsdale: Erlbaum.Google Scholar
  51. Zhu, L., Kim, S.-J., Hara, M., & Aono, M. (2018). Remarkable problem-solving ability of unicellular amoeboid organism and its mechanism. Royal Society Open Science, 5, 180396.CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Harinder Aujla
    • 1
    Email author
  • Matthew J. C. Crump
    • 2
  • Matthew T. Cook
    • 3
  • Randall K. Jamieson
    • 3
  1. 1.University of WinnipegWinnipegCanada
  2. 2.Brooklyn CollegeNew YorkUSA
  3. 3.University of ManitobaWinnipegCanada

Personalised recommendations