Advertisement

Behavior Research Methods

, Volume 51, Issue 2, pp 453–466 | Cite as

Quantifying sensorimotor experience: Body–object interaction ratings for more than 9,000 English words

  • Penny M. PexmanEmail author
  • Emiko Muraki
  • David M. Sidhu
  • Paul D. Siakaluk
  • Melvin J. Yap
Article

Abstract

Ratings of body–object interaction (BOI) measure the ease with which the human body can interact with a word’s referent. Researchers have studied the effects of BOI in order to investigate the relationships between sensorimotor and cognitive processes. Such efforts could be improved, however, by the availability of more extensive BOI norms. In the present work, we collected BOI ratings for over 9,000 words. These new norms show good reliability and validity and have extensive overlap with the words used both in other lexical and semantic norms and in the available behavioral megastudies (e.g., the English Lexicon Project, Balota, Yap, Cortese, Hutchison, Kessler, & Loftis in Behavior Research Methods, 39, 445–459, 2007; and the Calgary Semantic Decision Project, Pexman, Heard, Lloyd, & Yap in Behavior Research Methods, 49, 407–417, 2017). In analyses using the new BOI norms, we found that high-BOI words tended to be more concrete, more graspable, and more strongly associated with sensory, haptic, and visual experience than are low-BOI words. When we used the new norms to predict response latencies and accuracy data from the behavioral megastudies, we found that BOI was a stronger predictor of responses in the semantic decision task than in the lexical decision task. These findings are consistent with a dynamic, multidimensional account of lexical semantics. The norms described here should be useful for future research examining the effects of sensorimotor experience on performance in tasks involving word stimuli.

Keywords

Body-object interaction Lexical decision task Semantic decision task Sensorimotor processes Word ratings Word recognition 

Notes

Supplementary material

13428_2018_1171_MOESM1_ESM.csv (310 kb)
ESM 1 (CSV 309 kb)

References

  1. Amsel, B. D., Urbach, T. P., & Kutas, M. (2012). Perceptual and motor attribute ratings for 559 object concepts. Behavior Research Methods, 44, 1028–1041.  https://doi.org/10.3758/s13428-012-0215-z CrossRefGoogle Scholar
  2. Armstrong, B. C., Watson, C. E., & Plaut, D. C. (2012). SOS! An algorithm and software for the stochastic optimization of stimuli. Behavior Research Methods, 44, 675–705.  https://doi.org/10.3758/s13428-011-0182-9 CrossRefGoogle Scholar
  3. Balota, D. A., Yap, M. J., Cortese, M. J., Hutchison, K. A., Kessler, B., Loftis, B., … Treiman, R. (2007). The English Lexicon Project. Behavior Research Methods, 39, 445–459.  https://doi.org/10.3758/BF03193014 CrossRefGoogle Scholar
  4. Barsalou, L. W., Santos, A., Simmons, W. K., & Wilson, C. D. (2008). Language and simulation in conceptual processing. In M. DeVega, A. Glenberg, & A. C. Graesser (Eds.), Symbols, embodiment, and meaning (pp. 245–283). Oxford: Oxford University Press.CrossRefGoogle Scholar
  5. Bennett, S. D. R., Burnett, A. N., Siakaluk, P. D., & Pexman, P. M. (2011). Imageability and body–object interaction ratings for 599 multisyllabic nouns. Behavior Research Methods, 43, 1100–1109.  https://doi.org/10.3758/s13428-011-0117-5 CrossRefGoogle Scholar
  6. Brysbaert, M., Mandera, P., McCormick, S. F., & Keuleers, E. (2018). Word prevalence norms for 62,000 English lemmas. Behavior Research Methods. Advance online publication.  https://doi.org/10.3758/s13428-018-1077-9
  7. Brysbaert, M., & New, B. (2009). Moving beyond Kučera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior Research Methods, 41, 977–990.  https://doi.org/10.3758/BRM.41.4.977 CrossRefGoogle Scholar
  8. Brysbaert, M., New, B., & Keuleers, E. (2012). Adding part-of-speech information to the SUBTLEX-US word frequencies. Behavior Research Methods, 44, 991–997.  https://doi.org/10.3758/s13428-012-0190-4 CrossRefGoogle Scholar
  9. Brysbaert, M., Warriner, A. B., & Kuperman, V. (2014). Concreteness ratings for 40 thousand generally known English word lemmas. Behavior Research Methods, 46, 904–911.  https://doi.org/10.3758/s13428-013-0403-5 CrossRefGoogle Scholar
  10. Buchanan, L., Westbury, C., & Burgess, C. (2001). Characterizing semantic space: Neighborhood effects in word recognition. Psychonomic Bulletin & Review, 8, 531–544.  https://doi.org/10.3758/BF03196189 CrossRefGoogle Scholar
  11. Cortese, M. J., & Fugett, A. (2004). Imageability ratings for 3,000 monosyllabic words. Behavior Research Methods, Instruments, & Computers, 36, 384–387.  https://doi.org/10.3758/BF03195585 CrossRefGoogle Scholar
  12. Dove, G. (2011). On the need for embodied and dis-embodied cognition. Frontiers in Psychology, 1, 242.  https://doi.org/10.3389/fpsyg.2010.00242 CrossRefGoogle Scholar
  13. Dupuis, M., Meier, E., & Cuneo, F. (2018). Detecting computer-generated random responding in questionnaire-based data: A comparison of seven indices. Behavior Research Methods. Advance online publication.  https://doi.org/10.3758/s13428-018-1103-y
  14. Faust, M. E., Balota, D. A., Spieler, D. H., & Ferraro, F. R. (1999). Individual differences in information processing rate and amount: Implications for group differences in response latency. Psychological Bulletin, 125, 777–799.  https://doi.org/10.1037/0033-2909.125.6.777 CrossRefGoogle Scholar
  15. Glenberg, A. M. (2015). Few believe the world is flat: How embodiment is changing the scientific understanding of cognition. Canadian Journal of Experimental Psychology, 69, 165–171.CrossRefGoogle Scholar
  16. Hansen, D., Siakaluk, P. D., & Pexman, P. M. (2012). The influence of print exposure on the body–object interaction effect in visual word recognition. Frontiers in Human Neuroscience, 6, 113.  https://doi.org/10.3389/fnhum.2012.00113 CrossRefGoogle Scholar
  17. Hargreaves, I. S., Leonard, G. A., Pexman, P. M., Pittman, D. J., Siakaluk, P. D., & Goodyear, B. G. (2012). The neural correlates of the body-object interaction effect in semantic processing. Frontiers in Human Neuroscience, 6, 22.  https://doi.org/10.3389/fnhum.2012.00022 Google Scholar
  18. Hargreaves, I. S., & Pexman, P. M. (2014). Get rich quick: The signal to respond procedure reveals the time course of semantic richness effects during visual word recognition. Cognition, 131, 216–242.  https://doi.org/10.1016/j.cognition.2014.01.001 CrossRefGoogle Scholar
  19. Heard, A., Madan, C. R., Protzner, A. B., & Pexman, P. M. (2018). Getting a grip on sensorimotor effects in lexical–semantic processing. Behavior Research Methods. Advance online publication.  https://doi.org/10.3758/s13428-018-1072-1
  20. Hoenig, K., Sim, E.-J., Bochev, V., Herrnberger, B., & Kiefer, M. (2008). Conceptual flexibility in the human brain: Dynamic recruitment of semantic maps from visual, motor, and motion-related areas. Journal of Cognitive Neuroscience, 20, 1799–1814.  https://doi.org/10.1162/jocn.2008.20123 CrossRefGoogle Scholar
  21. Inkster, M., Wellsby, M., Lloyd, E., & Pexman, P. M. (2016). Development of embodied word meanings: Sensorimotor effects in children’s lexical processing. Frontiers in Psychology, 7, 317.  https://doi.org/10.3389/fpsyg.2016.00317 CrossRefGoogle Scholar
  22. Juhasz, B. J., & Yap, M. J. (2013). Sensory experience ratings for over 5,000 mono- and disyllabic words. Behavior Research Methods, 45, 160–168.  https://doi.org/10.3758/s13428-012-0242-9 CrossRefGoogle Scholar
  23. Juhasz, B. J., Yap, M. J., Dicke, J., Taylor, S. C., & Gullick, M. M. (2011). Tangible words are recognized faster: The grounding of meaning in sensory and perceptual systems. Quarterly Journal of Experimental Psychology, 64, 1683–1691.  https://doi.org/10.1080/17470218.2011.605150 CrossRefGoogle Scholar
  24. Kuperman, V., Stadthagen-Gonzalez, H., & Brysbaert, M. (2012). Age-of-acquisition ratings for 30,000 English words. Behavior Research Methods, 44, 978–990.  https://doi.org/10.3758/s13428-012-0210-4 CrossRefGoogle Scholar
  25. Lynott, D., & Connell, L. (2009). Modality exclusivity norms for 423 object properties. Behavior Research Methods, 41, 558–564.  https://doi.org/10.3758/BRM.41.2.558 CrossRefGoogle Scholar
  26. Lynott, D., & Connell, L. (2013). Modality exclusivity norms for 400 nouns: The relationship between perceptual experience and surface word form. Behavior Research Methods, 45, 516–526.  https://doi.org/10.3758/s13428-012-0267-0 CrossRefGoogle Scholar
  27. New, B., Ferrand, L., Pallier, C., & Brysbaert, M. (2006). Reexamining the word length effect in visual word recognition: New evidence from the English Lexicon Project. Psychonomic Bulletin & Review, 13, 45–52.  https://doi.org/10.3758/BF03193811 CrossRefGoogle Scholar
  28. Newcombe, P. I., Campbell, C., Siakaluk, P. D., & Pexman, P. M. (2012). Effects of emotional and sensorimotor knowledge in semantic processing of concrete and abstract nouns. Frontiers in Human Neuroscience, 6, 275.  https://doi.org/10.3389/fnhum.2012.00275 CrossRefGoogle Scholar
  29. Perry, L. K., Perlman, M., & Lupyan, G. (2015). Iconicity in English and Spanish and its relation to lexical category and age of acquisition. PLoS ONE, 10, e0137147.  https://doi.org/10.1371/journal.pone.0137147 CrossRefGoogle Scholar
  30. Pexman, P. M. (2012). Meaning-level influences on visual word recognition. In J. S. Adelman (Ed.), Visual word recognition: Vol. 2. Meaning and context, individuals and development (pp. 24–43). New York: Psychology Press.Google Scholar
  31. Pexman, P. M., Hargreaves, I. S., Siakaluk, P. D., Bodner, G. E., & Pope, J. (2008). There are many ways to be rich: Effects of three measures of semantic richness on visual word recognition. Psychonomic Bulletin & Review, 15, 161–167.  https://doi.org/10.3758/PBR.15.1.161 CrossRefGoogle Scholar
  32. Pexman, P. M., Heard, A., Lloyd, E., & Yap, M. J. (2017). The Calgary semantic decision project: concrete/abstract decision data for 10,000 English words. Behavior Research Methods, 49, 407–417.CrossRefGoogle Scholar
  33. Pexman, P. M., Lupker, S. J., & Hino, Y. (2002). The impact of feedback semantics in visual word recognition: Number-of-features effects in lexical decision and naming tasks. Psychonomic Bulletin & Review, 9, 542–549.  https://doi.org/10.3758/BF03196311 CrossRefGoogle Scholar
  34. Pexman, P. M., Siakaluk, P. D., & Yap, M. J. (2013). Introduction to the research topic meaning in mind: Semantic richness effects in language processing. Frontiers in Human Neuroscience, 7, 723.  https://doi.org/10.3389/fnhum.2013.00723 CrossRefGoogle Scholar
  35. Pexman, P. M., & Yap, M. J. (2018). Individual differences in semantic processing: Insights from the Calgary Semantic Decision Project. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44, 1091–1112.  https://doi.org/10.1037/xlm0000499 Google Scholar
  36. Phillips, C. I., Sears, C. R., & Pexman, P. M. (2012). An embodied semantic processing effect on eye gaze during sentence reading. Language and Cognition, 4, 99–114.CrossRefGoogle Scholar
  37. Reilly, J., Peelle, J. E., Garcia, A., & Crutch, S. J. (2016). Linking somatic and symbolic representation in semantic memory: The dynamic multilevel reactivation framework. Psychonomic Bulletin & Review, 23, 1002–1014.  https://doi.org/10.3758/s13423-015-0824-5 CrossRefGoogle Scholar
  38. Schock, J., Cortese, M. J., & Khanna, M. M. (2012). Imageability estimates for 3,000 disyllabic words. Behavior Research Methods, 44, 374–379.  https://doi.org/10.3758/s13428-011-0162-0 CrossRefGoogle Scholar
  39. Siakaluk, P. D., Buchanan, L., & Westbury, C. (2003). The effect of semantic distance in yes/no and go/no-go semantic categorization tasks. Memory & Cognition, 31, 100–113.  https://doi.org/10.3758/BF03196086 CrossRefGoogle Scholar
  40. Siakaluk, P. D., Pexman, P. M., Aguilera, L., Owen, W. J., & Sears, C. R. (2008a). Evidence for the activation of sensorimotor information during visual word recognition: The body–object interaction effect. Cognition, 106, 433–443.  https://doi.org/10.1016/j.cognition.2006.12.011 CrossRefGoogle Scholar
  41. Siakaluk, P. D., Pexman, P. M., Sears, C. R., Wilson, K., Locheed, K., & Owen, W. J. (2008b). The benefits of sensorimotor knowledge: Body–object interaction facilitates semantic processing. Cognitive Science, 32, 591–605.  https://doi.org/10.1080/03640210802035399 CrossRefGoogle Scholar
  42. Sidhu, D. M., Kwan, R., Pexman, P. M., & Siakaluk, P. D. (2014). Effects of relative embodiment in lexical and semantic processing of verbs. Acta Psychologica, 149, 32–39.CrossRefGoogle Scholar
  43. Taikh, A., Hargreaves, I. S., Yap, M. J., & Pexman, P. M. (2015). Semantic classification of pictures and words. Quarterly Journal of Experimental Psychology, 68, 1502–1518.CrossRefGoogle Scholar
  44. Thill, S., & Twomey, K. E. (2016). What’s on the inside counts: A grounded account of concept acquisition and development. Frontiers in Psychology, 7, 402.  https://doi.org/10.3389/fpsyg.2016.00402 CrossRefGoogle Scholar
  45. Tillotson, S. M., Siakaluk, P. D., & Pexman, P. M. (2008). Body-object interaction ratings for 1,618 monosyllabic nouns. Behavior Research Methods, 40, 1075–1078.  https://doi.org/10.3758/BRM.40.4.1075 CrossRefGoogle Scholar
  46. Tousignant, C., & Pexman, P. M. (2012). Flexible recruitment of semantic richness: Context modulates body–object interaction effects in lexical–semantic processing. Frontiers in Human Neuroscience, 6, 53.  https://doi.org/10.3389/fnhum.2012.0053 CrossRefGoogle Scholar
  47. van Dam, W. O., Brazil, I. A., Bekkering, H., & Rueschemeyer, S. (2014). Flexibility in embodied language processing: Context effects in lexical access. Topics in Cognitive Science, 6, 407–424.CrossRefGoogle Scholar
  48. van Dam, W. O., Rueschemeyer, S.-A., Lindemann, O., & Bekkering, H. (2010). Context effects in embodied lexical–semantic processing. Frontiers in Psychology, 1, 150.  https://doi.org/10.3389/fpsyg.2010.00150 Google Scholar
  49. Van Havermaet, L. R., & Wurm, L. H. (2014). Semantic effects in word recognition are moderated by body–object interaction. Mental Lexicon, 9, 1–22.CrossRefGoogle Scholar
  50. Vigliocco, G., Meteyard, L., Andrews, M., & Kousta, S. (2009). Toward a theory of semantic representation. Language and Cognition, 1, 219–247.  https://doi.org/10.1515/LANGCOG.2009.011 CrossRefGoogle Scholar
  51. Wellsby, M., & Pexman, P. M. (2014). The influence of bodily experience on children’s language processing. Topics in Cognitive Science, 6, 425–441.CrossRefGoogle Scholar
  52. Winter, B., Perlman, M., Perry, L. K., & Lupyan, G. (2017). Which words are most iconic? Interaction Studies, 18, 443–464.CrossRefGoogle Scholar
  53. Witherell, D., Wurm, L. H., Seaman, S. R., Brugnone, N. A., & Fulford, E. T. (2012). Danger and usefulness effects as a function of concept ancientness. Mental Lexicon, 7, 183–209.  https://doi.org/10.1075/ml.7.2.03wit CrossRefGoogle Scholar
  54. Wurm, L. H. (2007). Danger and usefulness: An alternative framework for understanding rapid evaluation effects in perception? Psychonomic Bulletin & Review, 14, 1218–1225.  https://doi.org/10.3758/BF03193116 CrossRefGoogle Scholar
  55. Wurm, L. H., & Seaman, S. R. (2008). Semantic effects in naming and perceptual identification, but not in delayed naming: Implications for models and tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 381–398.  https://doi.org/10.1037/0278-7393.34.2.381 Google Scholar
  56. Wurm, L. H., & Vakoch, D. A. (2000). The adaptive value of lexical connotation in speech perception. Cognition and Emotion, 14, 177–191.  https://doi.org/10.1080/026999300378923 CrossRefGoogle Scholar
  57. Wurm, L. H., Whitman, R. D., Seaman, S. R., Hill, L., & Ulstad, H. M. (2007). Semantic processing in auditory lexical decision: Ear-of-presentation and sex differences. Cognition and Emotion, 21, 1470–1495.  https://doi.org/10.1080/02699930600980908 CrossRefGoogle Scholar
  58. Xue, J., Marmolejo-Ramos, F., & Pei, X. (2015). The linguistic context effects on the processing of body–object interaction words: An ERP study on second language learners. Brain Research, 1613, 37–48.CrossRefGoogle Scholar
  59. Yap, M. J., & Balota, D. A. (2009). Visual word recognition of multisyllabic words. Journal of Memory and Language, 60, 502–529.  https://doi.org/10.1016/j.jml.2009.02.001 CrossRefGoogle Scholar
  60. Yap, M. J., Pexman, P. M., Wellsby, M., Hargreaves, I. S., & Huff, M. J. (2012). An abundance of riches: Cross-task comparisons of semantic richness effects in visual word recognition. Frontiers in Human Neuroscience, 6, 72.  https://doi.org/10.3389/fnhum.2012.00072 CrossRefGoogle Scholar
  61. Yarkoni, T., Balota, D., & Yap, M. (2008). Moving beyond Coltheart’s N: A new measure of orthographic similarity. Psychonomic Bulletin & Review, 15, 971–979.  https://doi.org/10.3758/PBR.15.5.971 CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Penny M. Pexman
    • 1
    Email author
  • Emiko Muraki
    • 1
  • David M. Sidhu
    • 1
  • Paul D. Siakaluk
    • 2
  • Melvin J. Yap
    • 3
  1. 1.University of CalgaryCalgaryCanada
  2. 2.University of Northern British ColumbiaPrince GeorgeCanada
  3. 3.National University SingaporeSingaporeSingapore

Personalised recommendations