Advertisement

The human task-evoked pupillary response function is linear: Implications for baseline response scaling in pupillometry

  • Jamie Reilly
  • Alexandra Kelly
  • Seung Hwan Kim
  • Savannah Jett
  • Bonnie Zuckerman
Article

Abstract

The human task-evoked pupillary response provides a sensitive physiological index of the intensity and online resource demands of numerous cognitive processes (e.g., memory retrieval, problem solving, or target detection). Cognitive pupillometry is a well-established technique that relies upon precise measurement of these subtle response functions. Baseline variability of pupil diameter is a complex artifact that typically necessitates mathematical correction. A methodological paradox within pupillometry is that linear and nonlinear forms of baseline scaling both remain accepted baseline correction techniques, despite yielding highly disparate results. The task-evoked pupillary response (TEPR) could potentially scale nonlinearly, similar to autonomic functions such as heart rate, in which the amplitude of an evoked response diminishes as the baseline rises. Alternatively, the TEPR could scale similarly to the cortical hemodynamic response, as a linear function that is independent of its baseline. However, the TEPR cannot scale both linearly and nonlinearly. Our aim was to adjudicate between linear and nonlinear scaling of human TEPR. We manipulated baseline pupil size by modulating the illuminance in the testing room as participants heard abrupt pure-tone transitions (Exp. 1) or visually monitored word lists (Exp. 2). Phasic pupillary responses scaled according to a linear function across all lighting (dark, mid, bright) and task (tones, words) conditions, demonstrating that the TEPR is independent of its baseline amplitude. We discuss methodological implications and identify a need to reevaluate past pupillometry studies.

Keywords

Pupillometry Executive functioning Arousal Cognitive load Psychophysics 

Notes

Author note

We thank our reviewers, editor, and Timothy Shipley for showing us the light.

References

  1. Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450.  https://doi.org/10.1146/annurev.neuro.28.061604.135709 CrossRefPubMedGoogle Scholar
  2. Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91, 276–292.  https://doi.org/10.1037/0033-2909.91.2.276 CrossRefPubMedGoogle Scholar
  3. Beatty, J., & Lucero-Wagoner, B. (2000). The pupillary system. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of Psychophysiology (2nd ed., pp. 142–162). Cambridge, UK: Cambridge University Press.Google Scholar
  4. Binda, P., Pereverzeva, M., & Murray, S. O. (2013). Attention to bright surfaces enhances the pupillary light reflex. Journal of Neuroscience, 33, 2199–2204.CrossRefGoogle Scholar
  5. Bradley, M. M., Keil, A., & Lang, P. J. (2012). Orienting and emotional perception: Facilitation, attenuation, and interference. Frontiers in Psychology, 3, 493.  https://doi.org/10.3389/fpsyg.2012.00493 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bradshaw, J. L. (1969). Background light intensity and the pupillary response in a reaction time task. Psychonomic Science, 14, 271–272.  https://doi.org/10.3758/BF03329118 CrossRefGoogle Scholar
  7. Brysbaert, M., & New, B. (2009). Moving beyond Kučera and Francis: A critical evaluation of present word frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior Research Methods, 41, 977–990.  https://doi.org/10.3758/BRM.41.4.977 CrossRefPubMedGoogle Scholar
  8. Coltheart, M. (1981). The MRC Psycholinguistic Database. Quarterly Journal of Experimental Psychology, 33A, 497–505.  https://doi.org/10.1080/14640748108400805 CrossRefGoogle Scholar
  9. Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173.CrossRefGoogle Scholar
  10. Duñabeitia, J. A., & Costa, A. (2015). Lying in a native and foreign language. Psychonomic Bulletin & Review, 22, 1124–1129.  https://doi.org/10.3758/s13423-014-0781-4 CrossRefGoogle Scholar
  11. Gilzenrat, M. S., Nieuwenhuis, S., Jepma, M., & Cohen, J. D. (2010). Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cognitive, Affective, & Behavioral Neuroscience, 10, 252–269.  https://doi.org/10.3758/CABN.10.2.252 CrossRefGoogle Scholar
  12. Graham, R., Hoover, A., Ceballos, N. A., & Komogortsev, O. (2011). Body mass index moderates gaze orienting biases and pupil diameter to high and low calorie food images. Appetite, 56, 577–586.CrossRefGoogle Scholar
  13. Greenfieldboyce N (2015) Eye shapes of the animal world hint at differences In our lifestyles. Retrieved July 8, 2018, from https://www.npr.org/sections/health-shots/2015/08/07/430149677/eye-shapes-of-the-animal-world-hint-at-differences-in-our-lifestyles
  14. Hayashi, N., Someya, N., & Fukuba, Y. (2010). Effect of intensity of dynamic exercise on pupil diameter in humans. Journal of Physiological Anthropology, 29, 119–122.CrossRefGoogle Scholar
  15. Hershman, R., Henik, A., & Cohen, N. (2018). A novel blink detection method on the basis of pupillometry noise. Behavior Research Methods, 50, 107–114.  https://doi.org/10.3758/s13428-017-1008-1 CrossRefPubMedGoogle Scholar
  16. Hess, E. H., & Polt, J. M. (1960). Pupil size as related to interest value of visual stimuli. Science, 132, 349–350.CrossRefGoogle Scholar
  17. Hess, E. H., & Polt, J. M. (1964). Pupil size in relation to mental activity during simple problem-solving. Science, 143, 1190–1192.CrossRefGoogle Scholar
  18. Holmqvist, K., & Nystrom, M. (2011). Eyetracking: A comprehensive guide to methods and measures. Oxford, UK: Oxford University Press.Google Scholar
  19. Iqbal, S. T., Zheng, X. S., & Bailey, B. P. (2004). Task-evoked pupillary response to mental workload in human-computer interaction. In CHI’04 extended abstracts on human factors in computing systems (pp. 1477–1480). New York, NY: ACM Press. Retrieved from http://dl.acm.org/citation.cfm?id=986094 Google Scholar
  20. Janisse, M. P. (1974). Pupillometry: Some advances, problems and solutions. In Pupillary dynamics and behavior (pp. 1–8). Berlin, Germany: Springer. Retrieved from http://link.springer.com/chapter/10.1007/978-1-4757-1642-9_1 CrossRefGoogle Scholar
  21. Jarosz, A. F., & Wiley, J. (2014). What are the odds? A practical guide to computing and reporting Bayes factors. Journal of Problem Solving, 7(1), 2.  https://doi.org/10.7771/1932-6246.1167 CrossRefGoogle Scholar
  22. JASP Team. (2017). JASP (Version 0.8.5). Retrieved from https://jasp-stats.org/
  23. Johnson, A. (2016). Package “equivalence” (Version 0.7.2). Retrieved from https://cran.r-project.org/web/packages/equivalence
  24. Kahneman, D. (1973). Attention and effort (Vol. 1063). Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  25. Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154, 1583–1585.  https://doi.org/10.1126/science.154.3756.1583 CrossRefPubMedGoogle Scholar
  26. Kankipati, L., Girkin, C. A., & Gamlin, P. D. (2011). The post-illumination pupil response is reduced in glaucoma patients. Investigative Ophthalmology and Visual Science, 52, 2287–2292.CrossRefGoogle Scholar
  27. Karatekin, C., Couperus, J. W., & Marcus, D. J. (2004). Attention allocation in the dual-task paradigm as measured through behavioral and psychophysiological responses. Psychophysiology, 41, 175–185.  https://doi.org/10.1111/j.1469-8986.2004.00147.x CrossRefPubMedGoogle Scholar
  28. Korn, C. W., & Bach, D. R. (2016). A solid frame for the window on cognition: Modeling event-related pupil responses. Journal of Vision, 16(3), 28.  https://doi.org/10.1167/16.3.28 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kruschke, J. K. (2011). Bayesian assessment of null values via parameter estimation and model comparison. Perspectives on Psychological Science, 6, 299–312.  https://doi.org/10.1177/1745691611406925 CrossRefPubMedGoogle Scholar
  30. Lacey, J. I. (1956). The evaluation of autonomic responses: Toward a general solution. Annals of the New York Academy of Sciences, 67, 125–163.CrossRefGoogle Scholar
  31. Laeng, B., Orbo, M., Holmlund, T., & Miozzo, M. (2011). Pupillary Stroop effects. Cognitive Processes, 12, 13–21.  https://doi.org/10.1007/s10339-010-0370-z CrossRefGoogle Scholar
  32. Laeng, B., & Sulutvedt, U. (2014). The eye pupil adjusts to imaginary light. Psychological Science, 25, 188–197.  https://doi.org/10.1177/0956797613503556 CrossRefPubMedGoogle Scholar
  33. Lakens, D. (2016). Equivalence tests: A practical primer for t-tests, correlations, and meta-analyses. PsyArXiv preprint.  https://doi.org/10.1177/1948550617697177 CrossRefGoogle Scholar
  34. Loewenfeld, I. E., & Lowenstein, O. (1993). The pupil: Anatomy, physiology, and clinical applications (Vol. 2). Ames, IA: Iowa State University Press.Google Scholar
  35. Mathôt, S., Fabius, J., Van Heusden, E., & Van der Stigchel, S. (2018). Safe and sensible preprocessing and baseline correction of pupil-size data. Behavior Research Methods, 50, 94–106.  https://doi.org/10.3758/s13428-017-1007-2 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mathôt, S., Grainger, J., & Strijkers, K. (2017). Pupillary responses to words that convey a sense of brightness or darkness. Psychological Science, 28, 1116–1124.  https://doi.org/10.1177/0956797617702699 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Moore, B. C. (1973). Frequency difference limens for short-duration tones. Journal of the Acoustical Society of America, 54, 610–619.CrossRefGoogle Scholar
  38. Papesh, M. H., & Goldinger, S. D. (2015). Pupillometry and memory: External signals of metacognitive control. In Handbook of biobehavioral approaches to self-regulation (pp. 125–139). New York, NY: Springer.  https://doi.org/10.1007/978-1-4939-1236-0_9 CrossRefGoogle Scholar
  39. Peysakhovich, V., Causse, M., Scannella, S., & Dehais, F. (2015). Frequency analysis of a task-evoked pupillary response: Luminance-independent measure of mental effort. International Journal of Psychophysiology, 97, 30–37.  https://doi.org/10.1016/j.ijpsycho.2015.04.019 CrossRefPubMedGoogle Scholar
  40. Peysakhovich, V., Vachon, F., & Dehais, F. (2017). The impact of luminance on tonic and phasic pupillary responses to sustained cognitive load. International Journal of Psychophysiology, 112, 40–45.CrossRefGoogle Scholar
  41. Pfleging, B., Fekety, D. K., Schmidt, A., & Kun, A. L. (2016). A model relating pupil diameter to mental workload and lighting conditions. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (pp. 5776–5788). New York, NY: ACM Press.  https://doi.org/10.1145/2858036.2858117 CrossRefGoogle Scholar
  42. Piquado, T., Isaacowitz, D., & Wingfield, A. (2010). Pupillometry as a measure of cognitive effort in younger and older adults. Psychophysiology, 47, 560–569.  https://doi.org/10.1111/j.1469-8986.2009.00947.x CrossRefPubMedPubMedCentralGoogle Scholar
  43. R Core Team. (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
  44. Rouder, J. N. (2014). Optional stopping: No problem for Bayesians. Psychonomic Bulletin & Review, 21, 301–308.  https://doi.org/10.3758/s13423-014-0595-4 CrossRefGoogle Scholar
  45. Siegle, G. J., Ichikawa, N., & Steinhauer, S. (2008). Blink before and after you think: blinks occur prior to and following cognitive load indexed by pupillary responses. Psychophysiology, 45, 679–687.CrossRefGoogle Scholar
  46. Spitschan, M., Jain, S., Brainard, D. H., & Aguirre, G. K. (2014). Opponent melanopsin and S-cone signals in the human pupillary light response. Proceedings of the National Academy of Sciences, 111, 15568–15572.  https://doi.org/10.1073/pnas.1400942111 CrossRefGoogle Scholar
  47. Steinhauer, S. R., & Hakerem, G. (1992). The pupillary response in cognitive psychophysiology and schizophrenia. Annals of the New York Academy of Sciences, 658, 182–204.CrossRefGoogle Scholar
  48. Steinhauer, S. R., Siegle, G. J., Condray, R., & Pless, M. (2004). Sympathetic and parasympathetic innervation of pupillary dilation during sustained processing. International Journal of Psychophysiology, 52, 77–86.CrossRefGoogle Scholar
  49. Szulewski, A., Roth, N., & Howes, D. (2015). The use of task-evoked pupillary response as an objective measure of cognitive load in novices and trained physicians: A new tool for the assessment of expertise. Academic Medicine, 90, 981–987.  https://doi.org/10.1097/ACM.0000000000000677 CrossRefPubMedGoogle Scholar
  50. Tryon, W. W. (1975). Pupillometry: A survey of sources of variation. Psychophysiology, 12, 90–93.CrossRefGoogle Scholar
  51. Tun, P. A., McCoy, S., & Wingfield, A. (2009). Aging, hearing acuity, and the attentional costs of effortful listening. Psychology and Aging, 24, 761–766.  https://doi.org/10.1037/a0014802 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Wang, C.-A., & Munoz, D. P. (2015). A circuit for pupil orienting responses: Implications for cognitive modulation of pupil size. Current Opinion in Neurobiology, 33, 134–140.CrossRefGoogle Scholar
  53. Warriner, A. B., Kuperman, V., & Brysbaert, M. (2013). Norms of valence, arousal, and dominance for 13,915 English lemmas. Behavior Research Methods, 45, 1191–1207.  https://doi.org/10.3758/s13428-012-0314-x CrossRefPubMedGoogle Scholar
  54. Weiss, M. W., Trehub, S. E., Schellenberg, E. G., & Habashi, P. (2016). Pupils dilate for vocal or familiar music. Journal of Experimental Psychology: Human Perception and Performance, 42, 1061–1065.  https://doi.org/10.1037/xhp0000226 CrossRefPubMedGoogle Scholar
  55. Wilder, J. (1958). Modern psychophysiology and the law of initial value. American Journal of Psychotherapy, 12, 199–221.  https://doi.org/10.1176/appi.psychotherapy.1958.12.2.199 CrossRefPubMedGoogle Scholar
  56. Wyatt, H. J. (1995). The form of the human pupil. Vision Research, 35, 2021–2036.CrossRefGoogle Scholar
  57. Xu, J., Wang, Y., Chen, F., & Choi, E. (2011). Pupillary response based cognitive workload measurement under luminance changes. In IFIP Conference on Human–Computer Interaction (pp. 178–185). Berlin, Germany: Springer.Google Scholar
  58. Zavagno, D., Tommasi, L., & Laeng, B. (2017). The eye pupil’s response to static and dynamic illusions of luminosity and darkness. i-Perception, 8, 2041669517717754.  https://doi.org/10.1177/2041669517717754 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zekveld, A. A., Heslenfeld, D. J., Johnsrude, I. S., Versfeld, N. J., & Kramer, S. E. (2014). The eye as a window to the listening brain: Neural correlates of pupil size as a measure of cognitive listening load. NeuroImage, 101, 76–86.  https://doi.org/10.1016/j.neuroimage.2014.06.069 CrossRefPubMedGoogle Scholar
  60. Zekveld, A. A., & Kramer, S. E. (2014). Cognitive processing load across a wide range of listening conditions: Insights from pupillometry. Psychophysiology, 51, 277–284.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Jamie Reilly
    • 1
    • 2
  • Alexandra Kelly
    • 1
    • 2
  • Seung Hwan Kim
    • 3
  • Savannah Jett
    • 4
  • Bonnie Zuckerman
    • 1
    • 2
  1. 1.Eleanor M. Saffran Center for Cognitive NeuroscienceTemple UniversityPhiladelphiaUSA
  2. 2.Department of Communication Sciences and DisordersTemple UniversityPhiladelphiaUSA
  3. 3.Department of Slavic & Eastern LanguagesBoston CollegeBostonUSA
  4. 4.Department of Linguistics and Cognitive SciencePomona CollegeClaremontUSA

Personalised recommendations