Advertisement

LAB: Linguistic Annotated Bibliography – a searchable portal for normed database information

  • Erin M. BuchananEmail author
  • K. D. Valentine
  • Nicholas P. Maxwell
Article

Abstract

This article presents the Linguistic Annotated Bibliography (LAB) as a searchable Web portal to quickly and easily access reliable database norms, related programs, and variable calculations. These publications were coded by language, number of stimuli, stimuli type (i.e., words, pictures, symbols), keywords (i.e., frequency, semantics, valence), and other useful information. This tool not only allows researchers to search for the specific type of stimuli needed for experiments but also permits the exploration of publication trends across 100 years of research. Details about the portal creation and use are outlined, as well as various analyses of change in publication rates and keywords. In general, advances in computational power have allowed for the increase in dataset size in the recent decades, in addition to an increase in the number of linguistic variables provided in each publication.

Keywords

Database Stimuli Online portal Megastudy Trends 

Notes

Acknowledgements

Erin M. Buchanan is an Associate Professor of Quantitative Psychology at Missouri State University. K. D. Valentine is a Ph.D. candidate at the University of Missouri. Nicholas P. Maxwell received his master’s degree from Missouri State University and is now a Ph.D. candidate at the University of Southern Mississippi. We thank Michael T. Carr, Farren E. Bankovich, Samantha D. Saxton, and Emmanuel Segui for their help with the original data processing, Bodo Winter and an anonymous reviewer for their comments on the manuscript, and William Padfield, Abigial Van Nuland, and Addie Wikowsky for their help with the application development for the Web site.

References

  1. Adelman, J. S., Brown, G. D., & Quesada, J. F. (2006). Contextual diversity, not word frequency, determines word-naming and lexical decision times. Psychological Science, 17(9), 814–823.  https://doi.org/10.1111/j.1467-9280.2006.01787.x CrossRefGoogle Scholar
  2. Aust, F., & Barth, M. (2017). papaja: Create APA manuscripts with R Markdown. Retrieved from https://github.com/crsh/papaja
  3. Baayen, R. H., Piepenbrock, R., Gulikers, L., & Linguistic Data Consortium (1995). The CELEX lexical database (CD-ROM). Philadelphia.Google Scholar
  4. Balota, D. A., Cortese, M. J., Sergent-Marshall, S. D., Spieler, D. H., & Yap, M. J. (2004). Visual word recognition of single-syllable words. Journal of Experimental Psychology: General, 133(2), 283–316.  https://doi.org/10.1037/0096-3445.133.2.283 CrossRefGoogle Scholar
  5. Balota, D. A., Yap, M. J., Hutchison, K. A., Cortese, M. J., Kessler, B., Loftis, B., & Treiman, R. (2007). The English lexicon project. Behavior Research Methods, 39(3), 445–459.  https://doi.org/10.3758/BF03193014 CrossRefGoogle Scholar
  6. Barca, L., Burani, C., & Arduino, L. S. (2002). Word naming times and psycholinguistic norms for Italian nouns. Behavior Research Methods, Instruments, & Computers, 34(3), 424–434.  https://doi.org/10.3758/BF03195471 CrossRefGoogle Scholar
  7. Boudelaa, S., & Marslen-Wilson, W. D. (2010). Aralex: A lexical database for modern standard Arabic. Behavior Research Methods, 42(2), 481–487.  https://doi.org/10.3758/BRM.42.2.481 CrossRefGoogle Scholar
  8. Bradshaw, J. L. (1984). A guide to norms, ratings, and lists. Memory & Cognition, 12(2), 202–206.  https://doi.org/10.3758/BF03198435 CrossRefGoogle Scholar
  9. Brodeur, M. B., Dionne-Dostie, E., Montreuil, T., & Lepage, M. (2010). The bank of standardized stimuli (BOSS), a new set of 480 normative photos of objects to be used as visual stimuli in cognitive research. PLoS ONE, 5(5), e10773.  https://doi.org/10.1371/journal.pone.0010773 CrossRefGoogle Scholar
  10. Brysbaert, M., & New, B. (2009). Moving beyond Kuč,era and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior Research Methods, 41(4), 977–990.  https://doi.org/10.3758/BRM.41.4.977 CrossRefGoogle Scholar
  11. Brysbaert, M., Buchmeier, M., Conrad, M., Jacobs, A. M., Bölte, J., & Böhl, A. (2011). The word frequency effect: A review of recent developments and implications for the choice of frequency estimates in German. Experimental Psychology, 58(5), 412–424.  https://doi.org/10.1027/1618-3169/a000123 CrossRefGoogle Scholar
  12. Brysbaert, M., Warriner, A. B., & Kuperman, . V. (2014). Concreteness ratings for 40 thousand generally known English word lemmas. Behavior Research Methods, 46(3), 904–911.  https://doi.org/10.3758/s13428-013-0403-5 CrossRefGoogle Scholar
  13. Buchanan, E. M., Holmes, J. L., Teasley, M. L., & Hutchison, K. A. (2013). English semantic word-pair norms and a searchable Web portal for experimental stimulus creation. Behavior Research Methods, 45(3), 746–757.  https://doi.org/10.3758/s13428-012-0284-z CrossRefGoogle Scholar
  14. Buchanan, E. M., & Scofield, J. E. (2018). Methods to detect low-quality data and its implication for psychological research. Behavior Research Methods.  https://doi.org/10.3758/s13428-018-1035-6
  15. Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon’s Mechanical Turk: A new source of inexpensive, yet high-quality, data? Perspectives on Psychological Science, 6(1), 3–5.  https://doi.org/10.1177/1745691610393980 CrossRefGoogle Scholar
  16. Burgess, C., & Livesay, K. (1998). The effect of corpus size in predicting reaction time in a basic word recognition task: Moving on from Kuč,era and Francis. Behavior Research Methods, Instruments, and Computers, 30(2), 272–277.  https://doi.org/10.3758/BF03200655 CrossRefGoogle Scholar
  17. Cai, Q., & Brysbaert, M. (2010). SUBTLEX-CH: Chinese word and character frequencies based on film subtitles. PLoS ONE, 5(6), e10729.  https://doi.org/10.1371/journal.pone.0010729 CrossRefGoogle Scholar
  18. Chang, W., Cheng, J., Allaire, J., Xie, Y., & McPherson, J. (2017). Shiny: Web application framework for R. Retrieved from https://CRAN.R-project.org/package=shiny
  19. Cohen-Shikora, E. R., Balota, D. A., Kapuria, A., & Yap, M. J. (2013). The past tense inflection project (PTIP): Speeded past tense inflections, imageability ratings, and past tense consistency measures for 2,200 verbs. Behavior Research Methods, 45(1), 151–159.  https://doi.org/10.3758/s13428-012-0240-y CrossRefGoogle Scholar
  20. Cree, G. S., & McRae, K. (2003). Analyzing the factors underlying the structure and computation of the meaning of chipmunk, cherry, chisel, cheese, and cello (and many other such concrete nouns). Journal of Experimental Psychology: General, 132(2), 163–201.  https://doi.org/10.1037/0096-3445.132.2.163 CrossRefGoogle Scholar
  21. Cree, G. S., McRae, K., & McNorgan, C. (1999). An attractor model of lexical conceptual processing: Simulating semantic priming. Cognitive Science, 23, 371–414.  https://doi.org/10.1016/S0364-0213(99)00005-1 CrossRefGoogle Scholar
  22. Cuetos, F., Glez-Nosti, M., Barbon, A., & Brysbaert, M. (2011). SUBTLEX-ESP: Spanish word frequencies based on film subtitles. Psicologica, 32, 133–143.Google Scholar
  23. De Deyne, S., Navarro, D. J., & Storms, G. (2013). Better explanations of lexical and semantic cognition using networks derived from continued rather than single-word associations. Behavior Research Methods, 45(2), 480–498.  https://doi.org/10.3758/s13428-012-0260-7 CrossRefGoogle Scholar
  24. Dimitropoulou, M., Duñabeitia, J. A., Avilés, A., Corral, J., & Carreiras, M. (2010). Subtitle-based word frequencies as the best estimate of reading behavior: The case of Greek. Frontiers in Psychology, 1(DEC), 1–12.  https://doi.org/10.3389/fpsyg.2010.00218 Google Scholar
  25. Dodds, P. S., Harris, K. D., Kloumann, I. M., Bliss, C. A., & Danforth, C. M. (2011). Temporal patterns of happiness and information in a global social network: Hedonometrics and Twitter. PLoS ONE, 6(12), e26752.  https://doi.org/10.1371/journal.pone.0026752 CrossRefGoogle Scholar
  26. Dufau, S., Duñabeitia, J. A., Moret-Tatay, C., McGonigal, A., Peeters, D., Alario, F. X., & Grainger, J. (2011). Smart phone, smart science: How the use of smartphones can revolutionize research in cognitive science. PLoS ONE, 6(9), e24974.  https://doi.org/10.1371/journal.pone.0024974 CrossRefGoogle Scholar
  27. Guasch, M., Boada, R., Ferré, P., & Sánchez-Casas, R. (2013). NIM: A Web-based Swiss army knife to select stimuli for psycholinguistic studies. Behavior Research Methods, 45(3), 765–771.  https://doi.org/10.3758/s13428-012-0296-8 CrossRefGoogle Scholar
  28. Hammarstrom, F. H. (n.d.) Glottolog 3.3. Retrieved from https://glottolog.org/
  29. Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2-3), 61–83.  https://doi.org/10.1017/S0140525X0999152X CrossRefGoogle Scholar
  30. Heuven, W. J. B., van Mandera, P., Keuleers, E., & Brysbaert, M. (2014). Subtlex-UK: A new and improved word frequency database for British English. Quarterly Journal of Experimental Psychology, 67(6), 1176–1190.  https://doi.org/10.1080/17470218.2013.850521 CrossRefGoogle Scholar
  31. Hutchison, K. A., Balota, D. A., Neely, J. H., Cortese, M. J., Cohen-Shikora, E. R., Tse, C. -S., & Buchanan, E. M. (2013). The semantic priming project. Behavior Research Methods, 45(4), 1099–1114.  https://doi.org/10.3758/s13428-012-0304-z CrossRefGoogle Scholar
  32. Kent, G. H., & Rosanoff, A. J. (1910). A study of association in insanity. American Journal of Insanity, 67, 37–96.  https://doi.org/10.1037/13767-000 Google Scholar
  33. Keuleers, E., Brysbaert, M., & New, B. (2010). SUBTLEX-NL: A new measure for Dutch word frequency based on film subtitles. Behavior Research Methods, 42(3), 643–650.  https://doi.org/10.3758/BRM.42.3.643 CrossRefGoogle Scholar
  34. Keuleers, E., Lacey, P., Rastle, K., & Brysbaert, M. (2012). The British Lexicon Project: Lexical decision data for 28,730 monosyllabic and disyllabic English words. Behavior Research Methods, 44(1), 287–304.  https://doi.org/10.3758/s13428-011-0118-4 CrossRefGoogle Scholar
  35. Kloumann, I. M., Danforth, C. M., Harris, K. D., Bliss, C. A., & Dodds, P. S. (2012). Positivity of the English language. PLoS ONE, 7(1), e29484.  https://doi.org/10.1371/journal.pone.0029484 CrossRefGoogle Scholar
  36. Kučera, H., & Francis, W. N. (1967) Computational analysis of present-day American English. Providence: Brown University Press.Google Scholar
  37. Kuperman, V., Stadthagen-Gonzalez, H., & Brysbaert, M. (2012). Age-of-acquisition ratings for 30,000 English words. Behavior Research Methods, 44(4), 978–990.  https://doi.org/10.3758/s13428-012-0210-4 CrossRefGoogle Scholar
  38. Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104(2), 211–240.  https://doi.org/10.1037//0033-295X.104.2.211 CrossRefGoogle Scholar
  39. Lété, B., Sprenger-Charolles, L., & Colé, P. (2004). MANULEX: A grade-level lexical database from French elementary school readers. Behavior Research Methods, Instruments, & Computers, 36(1), 156–166.  https://doi.org/10.3758/BF03195560 CrossRefGoogle Scholar
  40. List, J.-M., Winter, B., & Wedel, A. (n.d.) The Language Goldmine. Retrieved from http://languagegoldmine.com/
  41. Maki, W. S., McKinley, L. N., & Thompson, A. G. (2004). Semantic distance norms computed from an electronic dictionary (WordNet). Behavior Research Methods, Instruments, & Computers, 36(3), 421–431.  https://doi.org/10.3758/BF03195590 CrossRefGoogle Scholar
  42. Mandera, P., Keuleers, E., Wodniecka, Z., & Brysbaert, M. (2015). Subtlex-pl: Subtitle-based word frequency estimates for Polish. Behavior Research Methods, 47(2), 471–483.  https://doi.org/10.3758/s13428-014-0489-4 CrossRefGoogle Scholar
  43. Mason, W., & Suri, S. (2012). Conducting behavioral research on Amazon’s Mechanical Turk. Behavior Research Methods, 44(1), 1–23.  https://doi.org/10.3758/s13428-011-0124-6 CrossRefGoogle Scholar
  44. McRae, K., Sa, V. R., & Seidenberg, M. S. (1997). On the nature and scope of featural representations of word meaning. Journal of Experimental Psychology: General, 126(2), 99–130.  https://doi.org/10.1037/0096-3445.126.2.99 CrossRefGoogle Scholar
  45. Miller, G. A. (2003). The cognitive revolution: a historical perspective. Trends in Cognitive Sciences, 7, 141–144.  https://doi.org/10.1016/S1364-6613(03)00029-9 CrossRefGoogle Scholar
  46. Moss, H. E., Tyler, L. K., Devlin, J. T, & Devlin, J. T. (2002). The emergence of category-specific deficits in a distributed semantic system E. Forde, G. Humphreys, H. E. Moss, & L. K. Tyler (Eds.) In Forde, E., Humphreys, G., Moss, H. E., & Tyler, L. K. (Eds.) Category-specificity in mind and brain (pp. 115–145). CRC Press.Google Scholar
  47. Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (2004). The University of South Florida free association, rhyme, and word fragment norms. Behavior Research Methods, Instruments, & Computers, 36(3), 402–407.  https://doi.org/10.3758/BF03195588 CrossRefGoogle Scholar
  48. New, B., Brysbaert, M., Veronis, J., & Pallier, C. (2007). The use of film subtitles to estimate word frequencies. Applied Psycholinguistics, 28(4), 661–677.  https://doi.org/10.1017/S014271640707035X.CrossRefGoogle Scholar
  49. Pexman, P. M., Holyk, G. G., & Monfils, M. -H. (2003). Number-of-features effects and semantic processing. Memory & Cognition, 31(6), 842–855.  https://doi.org/10.3758/BF03196439 CrossRefGoogle Scholar
  50. Postman, L., & Keppel, G. (1970) Norms of word association. New York: Academic Press.Google Scholar
  51. Proctor, R. W., & Vu, K. -P. L (1999). Index of norms and ratings published in the Psychonomic Society journals. Behavior Research Methods, Instruments, & Computers, 31(4), 659–667.  https://doi.org/10.3758/BF03200742 CrossRefGoogle Scholar
  52. Rayner, K., & Duffy, S. A. (1986). Lexical complexity and fixation times in reading: Effects of word frequency, verb complexity, and lexical ambiguity. Memory & Cognition, 14(3), 191–201.  https://doi.org/10.3758/BF03197692 CrossRefGoogle Scholar
  53. Rogers, T. T., & McClelland, J. L. (2004) Semantic cognition: A parallel distributed processing approach. Cambridge: MIT Press.Google Scholar
  54. Snodgrass, J. G., & Vanderwart, M. (1980). A standardized set of 260 pictures: Norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology: Human Learning and Memory, 6 (2), 174–215.  https://doi.org/10.1037/0278-7393.6.2.174 Google Scholar
  55. Soares, A. P., Medeiros, J. C., Simões, A., Machado, J., Costa, A., Iriarte, Á., & Scomesaña, M. (2014). ESCOLEX: A grade-level lexical database from European Portuguese elementary to middle school textbooks. Behavior Research Methods, 46(1), 240–253.  https://doi.org/10.3758/s13428-013-0350-1 CrossRefGoogle Scholar
  56. Sze, W. P., Rickard Liow, S. J., & Yap, M. J. (2014). The Chinese Lexicon Project: A repository of lexical decision behavioral responses for 2,500 Chinese characters. Behavior Research Methods, 46(1), 263–273.  https://doi.org/10.3758/s13428-013-0355-9 CrossRefGoogle Scholar
  57. Tse, C.-S., Yap, M. J., Chan, Y.-L., Sze, W. P., Shaoul, C., & Lin, D. (2017). The Chinese Lexicon Project: A megastudy of lexical decision performance for 25,000+ traditional Chinese two-character compound words. Behavior Research Methods, 49(4), 1503–1519.  https://doi.org/10.3758/s13428-016-0810-5 CrossRefGoogle Scholar
  58. Vaughan, J. (2004). A web-based archive of norms, stimuli, and data. Behavior Research Methods, Instruments, & Computers, 36(3), 363–370.  https://doi.org/10.3758/BF03195583 CrossRefGoogle Scholar
  59. Vigliocco, G., Vinson, D. P., Lewis, W., & Garrett, M. F. (2004). Representing the meanings of object and action words: The featural and unitary semantic space hypothesis. Cognitive Psychology, 48(4), 422–488.  https://doi.org/10.1016/j.cogpsych.2003.09.001 CrossRefGoogle Scholar
  60. Vinson, D. P., Vigliocco, G., Cappa, S., & Siri, S. (2003). The breakdown of semantic knowledge: Insights from a statistical model of meaning representation. Brain and Language, 86(3), 347–365.  https://doi.org/10.1016/S0093-934X(03)00144-5 CrossRefGoogle Scholar
  61. Vo, M. L. H., Conrad, M., Kuchinke, L., Urton, K., Hofmann, M. J., & Jacobs, A. M. (2009). The Berlin Affective Word List Reloaded (BAWL-R). Behavior Research Methods, 41(2), 534–538.  https://doi.org/10.3758/BRM.41.2.534 CrossRefGoogle Scholar
  62. Warriner, A. B., Kuperman, V., & Brysbaert, M. (2013). Norms of valence, arousal, and dominance for 13,915 English lemmas. Behavior Research Methods, 45(4), 1191–1207.  https://doi.org/10.3758/s13428-012-0314-x CrossRefGoogle Scholar
  63. Yap, M. J., Rickard Liow, S. J., Jalil, S. B., & Faizal, S. S. B. (2010). The Malay Lexicon Project: A database of lexical statistics for 9,592 words. Behavior Research Methods, 42(4), 992–1003.  https://doi.org/10.3758/BRM.42.4.992 CrossRefGoogle Scholar
  64. Yap, M. J., Tan, S. E., Pexman, P. M., & Hargreaves, I. S. (2011). Is more always better? Effects of semantic richness on lexical decision, speeded pronunciation, and semantic classification. Psychonomic Bulletin and Review, 18(4), 742–750.  https://doi.org/10.3758/s13423-011-0092-y CrossRefGoogle Scholar
  65. Zevin, J., & Seidenberg, M. (2002). Age of acquisition effects in word reading and other tasks. Journal of Memory and Language, 47(1), 1–29.  https://doi.org/10.1006/jmla.2001.2834 CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Erin M. Buchanan
    • 1
    Email author
  • K. D. Valentine
    • 2
  • Nicholas P. Maxwell
    • 1
  1. 1.Missouri State UniversitySpringfieldUSA
  2. 2.University of MissouriColumbiaUSA

Personalised recommendations