Advertisement

Group communication analysis: A computational linguistics approach for detecting sociocognitive roles in multiparty interactions

  • Nia M. M. Dowell
  • Tristan M. Nixon
  • Arthur C. Graesser
Article

Abstract

Roles are one of the most important concepts in understanding human sociocognitive behavior. During group interactions, members take on different roles within the discussion. Roles have distinct patterns of behavioral engagement (i.e., active or passive, leading or following), contribution characteristics (i.e., providing new information or echoing given material), and social orientation (i.e., individual or group). Different combinations of roles can produce characteristically different group outcomes, and thus can be either less or more productive with regard to collective goals. In online collaborative-learning environments, this can lead to better or worse learning outcomes for the individual participants. In this study, we propose and validate a novel approach for detecting emergent roles from participants’ contributions and patterns of interaction. Specifically, we developed a group communication analysis (GCA) by combining automated computational linguistic techniques with analyses of the sequential interactions of online group communication. GCA was applied to three large collaborative interaction datasets (participant N = 2,429, group N = 3,598). Cluster analyses and linear mixed-effects modeling were used to assess the validity of the GCA approach and the influence of learner roles on student and group performance. The results indicated that participants’ patterns of linguistic coordination and cohesion are representative of the roles that individuals play in collaborative discussions. More broadly, GCA provides a framework for researchers to explore the micro intra- and interpersonal patterns associated with participants’ roles and the sociocognitive processes related to successful collaboration.

Keywords

Group communication analysis Social roles Group interaction Computational linguistics 

Supplementary material

13428_2018_1102_MOESM1_ESM.docx (1.8 mb)
ESM 1 (DOCX 1844 kb)

References

  1. Akkerman, S., Van den Bossche, P., Admiraal, W., Gijselaers, W., Segers, M., Simons, R.-J., & Kirschner, P. (2007). Reconsidering group cognition: From conceptual confusion to a boundary area between cognitive and socio-cultural perspectives? Educational Research Review, 2, 39–63. doi: https://doi.org/10.1016/j.edurev.2007.02.001 CrossRefGoogle Scholar
  2. Alavi, M., & Dufner, D. (2004). Technology-mediated collaborative learning: A research perspective. In S. R. Hiltz & R. Goldman (Eds.), Learning together online: Research on asynchronous learning networks (pp. 191–213). Mahwah, NJ: Erlbaum.Google Scholar
  3. Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 32–46. doi: https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x CrossRefGoogle Scholar
  4. Antonenko, P. D., Toy, S., & Niederhauser, D. S. (2012). Using cluster analysis for data mining in educational technology research. Educational Technology Research and Development, 60, 383–398.CrossRefGoogle Scholar
  5. Arvaja, M., & Hämäläinen, R. (2008). Collaborative knowledge construction during structured tasks in an online course at higher education context. In G. F. Ollington (Ed.), Teachers and teaching: Strategies, innovations and problem solving. (pp. 359–376). New York, NY: Nova Science.Google Scholar
  6. Azevedo, R., Moos, D. C., Johnson, A. M., & Chauncey, A. (2010). Measuring cognitive and metacognitive regulatory processes during hypermedia learning: Issues and challenges. Educational Psychologist, 45, 210–223. doi: https://doi.org/10.1080/00461520.2010.515934 CrossRefGoogle Scholar
  7. Azevedo, R., Winters, F. I., & Moos, D. C. (2004). Students collaboratively use hypermedia to learn science? The dynamics of self-and other-regulatory processes in an ecology classroom. Journal of Educational Computing Research, 31, 215–245. doi: https://doi.org/10.2190/HFT6-8EB1-TN99-MJVQ CrossRefGoogle Scholar
  8. Bagley, E., & Shaffer, D. (2015). Learning in an urban and regional planning practicum: The view from educational ethnography. Journal of Interactive Learning Research, 26, 369–393.Google Scholar
  9. Baker, R. S. (2010). Data mining for education. In B. McGaw, P. Peterson, & E. Baker (Eds.), International encyclopedia of education (3rd ed., Vol. 7, pp. 112–118). Oxford, UK: Elsevier.CrossRefGoogle Scholar
  10. Baker, R. S., D’Mello, S. K., Rodrigo, M. M. T., & Graesser, A. C. (2010). Better to be frustrated than bored: The incidence, persistence, and impact of learners’ cognitive–affective states during interactions with three different computer-based learning environments. International Journal of Human–Computer Studies, 68, 223–241. doi: https://doi.org/10.1016/j.ijhcs.2009.12.003 CrossRefGoogle Scholar
  11. Bandura, A. (1994). Social cognitive theory of mass communication. In J. Bryant & D. Zillmann (Eds.), Media effects: Advances in theory and research (pp. 61–96). Hillsdale, NJ: Erlbaum.Google Scholar
  12. Barron, B. (2000). Achieving coordination in collaborative problem-solving groups. Journal of the Learning Sciences, 9, 403–436. doi: https://doi.org/10.1207/S15327809JLS0904_2 CrossRefGoogle Scholar
  13. Barron, B. (2003). When smart groups fail. Journal of the Learning Sciences, 12, 307–359. doi: https://doi.org/10.1207/S15327809JLS1203_1 CrossRefGoogle Scholar
  14. Beers, P. J., Boshuizen, H. P. A., Kirschner, P. A., & Gijselaers, W. H. (2007). The analysis of negotiation of common ground in CSCL. Learning and Instruction, 17, 427–435. doi: https://doi.org/10.1016/j.learninstruc.2007.04.002 CrossRefGoogle Scholar
  15. Benamar, L., Balagué, C., & Ghassany, M. (2017). The identification and influence of social roles in a social media product community. Journal of Computer-Mediated Communication, 22, 337–362. doi: https://doi.org/10.1111/jcc4.12195 CrossRefGoogle Scholar
  16. Berkowitz, M. W., & Gibbs, J. C. (1983). Measuring the developmental features of moral discussion. Merrill-Palmer Quarterly, 29, 399–410.Google Scholar
  17. Blei, D. M., Ng, A., & Jordan, M. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.Google Scholar
  18. Blumenfeld, P. C., Kempler, T. M., & Krajcik, J. S. (2006). Motivation and cognitive engagement in learning environments. In K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 475–488). New York, NY, US: Cambridge University Press.Google Scholar
  19. Brock, G., Pihur, V., Datta, S., & Datta, S. (2008). clValid: An R package for cluster validation. Journal of Statistical Software, 25, 4. doi: https://doi.org/10.18637/jss.v025.i04 CrossRefGoogle Scholar
  20. Cade, W. L., Dowell, N. M., Graesser, A. C., Tausczik, Y. R., & Pennebaker, J. W. (2014). Modeling student socioaffective responses to group interactions in a collaborative online chat environment. In J. Stamper, Z. Pardos, M. Mavrikis, & B. M. McLaren (Eds.), Proceedings of the 7th International Conference on Educational Data Mining (pp. 399–400). Berlin, Germany: Springer.Google Scholar
  21. Cai, Z., Burkett, C., Morgan, B., & Shaffer, D. (2011). Generation of domain-specific LSA spaces. Paper presented at the 41st Annual Meetings of the Society for Computers in Psychology (SCiP), Seattle, Washington.Google Scholar
  22. Cai, Z., Eagen, B., Dowell, N. M., Pennebaker, J. W., Shaffer, D., & Graesser, A. C. (2017). Epistemic network analysis and topic modeling for chat data from collaborative learning environment. In X. Hu, T. Barnes, A. Hershkovitz, & L. Paquette (Eds.), Proceedings of the 10th International Conference on Educational Data Mining (pp. 104–111). Worcester, MA: International Educational Data Mining Society.Google Scholar
  23. Cai, Z., Li, H., Hu, X., & Graesser, A. C. (2016). Can word probabilities from LDA be simply adde up to represent documents? In T. Barnes, M. Chi, & M. Feng (Eds.), Proceedings of the 9th International Conference on Educational Data Mining (pp. 577–578). Worcester, MA: International Educational Data Mining Society. Retrieved from https://www.researchgate.net/publication/305045020_Can_word_probabilities_from_LDA_be_simply_added_up_to_represent_documents Google Scholar
  24. Çakır, M. P., Zemel, A., & Stahl, G. (2009). The joint organization of interaction within a multimodal CSCL medium. International Journal of Computer-Supported Collaborative Learning, 4, 115–149. doi: https://doi.org/10.1007/s11412-009-9061-0 CrossRefGoogle Scholar
  25. Capuano, N., Mangione, G. R., Mazzoni, E., Miranda, S., & Orciuoli, F. (2014). Wiring role taking in collaborative learning environments: SNA and semantic web can improve CSCL script? International Journal of Emerging Technologies in Learning, 9, 30–38.CrossRefGoogle Scholar
  26. Care, Esther, Scoular, C., & Griffin, P. (2016). Assessment of collaborative problem solving in education environments. Applied Measurement in Education, 29, 250–264. doi: https://doi.org/10.1080/08957347.2016.1209204 CrossRefGoogle Scholar
  27. Chan, C. K. K. (2012). Co-regulation of learning in computer-supported collaborative learning environments: a discussion. Metacognition and Learning, 7, 63–73. doi: https://doi.org/10.1007/s11409-012-9086-z CrossRefGoogle Scholar
  28. Charrad, M., Ghazzali, N., Boiteau, V., & Niknafs, A. (2014). NbClust: An R package for determining the relevant number of clusters in a data set. Journal of Statistical Software, 61(6), 1–36. doi: https://doi.org/10.18637/jss.v061.i06 CrossRefGoogle Scholar
  29. Chauhan, A. (2015). Beyond the phenomenon: Assessment in massive open online courses (MOOCs). In M. Elspeth (Ed.), Macro-level learning through massive open online courses (MOOCs): Strategies and predictions for the future (pp. 119–141). Hershey, PA: IGI Global. Retrieved from  https://doi.org/10.4018/978-1-4666-8324-2.ch007 CrossRefGoogle Scholar
  30. Chi, M. T. H. (2009). Active–Constructive–Interactive: A conceptual framework for differentiating learning activities. Topics in Cognitive Science, 1, 73–105. doi: https://doi.org/10.1111/j.1756-8765.2008.01005.x PubMedCrossRefGoogle Scholar
  31. Chi, M. T. H., & Menekse, M. (2015). Dialogue patterns in peer collaboration that promote learning. In Lauren B. Resnick, C. S. C. Asterhan, & S. N. Clarke (Eds.), Socializing intelligence through academic talk and dialogue (pp. 263–274). Washington, DC: American Educational Research Association. Retrieved from ebooks.aera.net/SOCCH21Google Scholar
  32. Chiu, M. M. (2000). Group problem-solving processes: Social interactions and individual actions. Journal for the Theory of Social Behaviour, 30, 26–49. doi: https://doi.org/10.1111/1468-5914.00118 CrossRefGoogle Scholar
  33. Clark, H. (1996). Using language. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  34. Clark, H., & Brennan, S. E. (1991). Grounding in communication. In L. B. Resnick, J. M. Levine, & S. D. Teasley (Eds.), Perspectives on socially shared cognition (pp. 127–149). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  35. Cress, U. (2008). The need for considering multilevel analysis in CSCL research—An appeal for the use of more advanced statistical methods. International Journal of Computer-Supported Collaborative Learning, 3, 69–84. doi: https://doi.org/10.1007/s11412-007-9032-2 CrossRefGoogle Scholar
  36. Dalton, L., Ballarin, V., & Brun, M. (2009). Clustering algorithms: On learning, validation, performance, and applications to genomics. Current Genomics, 10, 430–445. doi: https://doi.org/10.2174/138920209789177601 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Daradoumis, T., Martínez-Monés, A., & Xhafa, F. (2006). A layered framework for evaluating on-line collaborative learning interactions. International Journal of Human–Computer Studies, 64, 622–635. doi: https://doi.org/10.1016/j.ijhcs.2006.02.001 CrossRefGoogle Scholar
  38. Dascalu, M., McNamara, D. S., Trausan-Matu, S., & Allen, L. K. (2018). Cohesion network analysis of CSCL participation. Behavior Research Methods, 50, 604–619. doi: https://doi.org/10.3758/s13428-017-0888-4 PubMedCrossRefGoogle Scholar
  39. Datta, S., & Datta, S. (2003). Comparisons and validation of statistical clustering techniques for microarray gene expression data. Bioinformatics, 19, 459–466. doi: https://doi.org/10.1093/bioinformatics/btg025 PubMedCrossRefGoogle Scholar
  40. De Wever, B., Keer, H. V., Schellens, T., & Valcke, M. (2010). Roles as a structuring tool in online discussion groups: The differential impact of different roles on social knowledge construction. Computers in Human Behavior, 26, 516–523. doi: https://doi.org/10.1016/j.chb.2009.08.008 CrossRefGoogle Scholar
  41. De Wever, B., Van Keer, H., Schellens, T., & Valcke, M. (2007). Applying multilevel modelling to content analysis data: Methodological issues in the study of role assignment in asynchronous discussion groups. Learning and Instruction, 17, 436–447. doi: https://doi.org/10.1016/j.learninstruc.2007.04.001 CrossRefGoogle Scholar
  42. Dennis, A. R. (1996). Information exchange and use in group decision making: You can lead a group to information, but you can’t make it think. MIS Quarterly, 20, 433–457. doi: https://doi.org/10.2307/249563 CrossRefGoogle Scholar
  43. Dillenbourg, P. (1999). Collaborative learning: Cognitive and computational approaches. Amsterdam, The Netherlands: Pergamon.Google Scholar
  44. Dillenbourg, P., & Fischer, F. (2007). Basics of computer-supported collaborative learning. Zeitschrift für Berufs- und Wirtschaftspadagogik, 21, 111–130.Google Scholar
  45. Dillenbourg, P., Järvelä, S., & Fischer, F. (2009). The evolution of research on computer-supported collaborative learning. In D. N. Balacheff, D. S. Ludvigsen, D. T. de Jong, D. A. Lazonder, & D. S. Barnes (Eds.), Technology-enhanced learning (pp. 3–19). Amsterdam, The Netherlands: Springer. doi: https://doi.org/10.1007/978-1-4020-9827-7_1 CrossRefGoogle Scholar
  46. Dillenbourg, P., & Traum, D. (2006). Sharing solutions: Persistence and grounding in multimodal collaborative problem solving. Journal of the Learning Sciences, 15, 121–151. doi: https://doi.org/10.1207/s15327809jls1501_9 CrossRefGoogle Scholar
  47. D’Mello, S., & Graesser, A. C. (2012). Language and discourse are powerful signals of student emotions during tutoring. IEEE Transactions on Learning Technologies, 5, 304–317. doi: https://doi.org/10.1109/TLT.2012.10 CrossRefGoogle Scholar
  48. Doise, W. (1990). The development of individual competencies through social interaction. In H. C. Foot, M. J. Morgan, & R. Shute (Eds.), Children helping children. Chichester, UK: Wiley.Google Scholar
  49. Dong, A. (2005). The latent semantic approach to studying design team communication. Design Studies, 26, 445–461. doi: https://doi.org/10.1016/j.destud.2004.10.003 CrossRefGoogle Scholar
  50. Dowell, N. M., Brooks, C., Kovanović, V., Joksimović, S., & Gašević, D. (2017). The changing patterns of MOOC discourse. In C. Urrea, J. Reich, & C. Thille (Eds.), Proceedings of the Fourth (2017) ACM Conference on Learning @ Scale (pp. 283–286). New York, NY: ACM.Google Scholar
  51. Dowell, N. M., Brooks, C., & Poquet, O. (2018). Applying group communication analysis to educational discourse interactions at scale. In J. Kay & R. Luckin (Eds.), Proceedings of the 13th International Conference of the Learning Sciences (pp. 1815–1822). London, UK: International Society of the Learning Sciences.Google Scholar
  52. Dowell, N. M., Cade, W. L., Tausczik, Y. R., Pennebaker, J. W., & Graesser, A. C. (2014). What works: Creating adaptive and intelligent systems for collaborative learning support. In S. Trausan-Matu, K. E. Boyer, M. Crosby, & K. Panourgia (Eds.), Twelfth International Conference on Intelligent Tutoring Systems. (pp. 124–133). Berlin, Germany: Springer.CrossRefGoogle Scholar
  53. Dowell, N. M., & Graesser, A. C. (2015). Modeling learners’ cognitive, affective, and social processes through language and discourse. Journal of Learning Analytics, 1, 183–186.CrossRefGoogle Scholar
  54. Dowell, N. M., Skrypnyk, O., Joksimović, S., Graesser, A. C., Dawson, S., Gašević, S., . . . Kovanović, V. (2015). Modeling learners’ social centrality and performance through language and discourse. In C. Romero & M. Pechenizkiy (Eds.), Proceedings of the 8th International Conference on Educational Data Mining (pp. 250–257). Worcester, MA: International Educational Data Mining Society.Google Scholar
  55. Driskell, T., Driskell, J. E., Burke, C. S., & Salas, E. (2017). Team roles: A review and integration. Small Group Research, 48, 482–511. doi: https://doi.org/10.1177/1046496417711529 CrossRefGoogle Scholar
  56. Dunn, J. C. (1974). Well-separated clusters and optimal fuzzy partitions. Journal of Cybernetics, 4, 95–104. doi: https://doi.org/10.1080/01969727408546059 CrossRefGoogle Scholar
  57. Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2011). Model-based cluster analysis for structured data. In Cluster analysis (pp. 187–213). Chichester, UK: Wiley. Retrieved from http://onlinelibrary.wiley.com.proxy.lib.umich.edu/doi/10.1002/9780470977811.ch7/summary
  58. Felps, W., Mitchell, T. R., & Byington, E. (2006). How, when, and why bad apples spoil the barrel: Negative group members and dysfunctional groups. Research in Organizational Behavior, 27, 175–222. doi: https://doi.org/10.1016/S0191-3085(06)27005-9 CrossRefGoogle Scholar
  59. Fiore, S., & Schooler, J. (2004). Process mapping and shared cognition: Teamwork and the development of shared problem models. In E. Salas & S. Fiore (Eds.), Team cognition: Understanding the factors that drive process and performance (pp. 133–152). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  60. Foltz, P. W., & Martin, M. J. (2009). Automated communication analysis of teams. In E. Salas, G. F. Goodwin, & C. S. Burke (Eds.), Team effectiveness in complex organizations: Cross-disciplinary perspectives and approaches (pp. 411–431). Hove, UK: Psychology Press.Google Scholar
  61. Fox, J., & Weisberg, H. S. (2010). An R companion to applied regression (2nd ed.). Thousand Oaks, CA: Sage.Google Scholar
  62. Fuchs, L. S., Fuchs, D., Hamlett, C. L., & Karns, K. (1998). High-achieving students’ interactions and performance on complex mathematical tasks as a function of homogeneous and heterogeneous pairings. American Educational Research Journal, 35, 227–267. doi: https://doi.org/10.2307/1163424 CrossRefGoogle Scholar
  63. Gervits, F., Eberhard, K., & Scheutz, M. (2016). Team communication as a collaborative process. Frontiers in Robotics and AI, 3, 62. doi: https://doi.org/10.3389/frobt.2016.00062 CrossRefGoogle Scholar
  64. Gleave, E., Welser, H. T., Lento, T. M., & Smith, M. A. (2009). A conceptual and operational definition of “social role” in online community. In 2009 42nd Hawaii International Conference on System Sciences (pp. 1–11). Piscataway, NJ: IEEE Press. doi: https://doi.org/10.1109/HICSS.2009.6 CrossRefGoogle Scholar
  65. Gorman, J. C., Cooke, N. J., & Kiekel, P. A. (2004). Dynamical perspectives on team cognition. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 48, 673–677. doi: https://doi.org/10.1177/154193120404800385 CrossRefGoogle Scholar
  66. Gorman, J. C., Foltz, P. W., Kiekel, P. A., Martin, M. J., & Cooke, N. J. (2003). Evaluation of latent semantic analysis-based measures of team communications content. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 47, 424–428. doi: https://doi.org/10.1177/154193120304700337 CrossRefGoogle Scholar
  67. Graesser, A. C., D’Mello, S. K., & Strain, A. C. (2014). Emotions in advanced learning technologies. In R. Pekrun & L. Linnenbrink-Garcia (Eds.), International handbook of emotions in education. New York, NY: Routledge. Retrieved from https://www.routledgehandbooks.com/doi/10.4324/9780203148211.ch24 Google Scholar
  68. Graesser, A. C., Dowell, N., & Clewley, D. (2017). Assessing collaborative problem solving through conversational agents. In A. A. von Davier, M. Zhu, & P. C. Kyllonen (Eds.), Innovative assessment of collaboration (pp. 65–80). New York, NY: Springer. doi: https://doi.org/10.1007/978-3-319-33261-1_5 CrossRefGoogle Scholar
  69. Graesser, A. C., Foltz, P., Rosen, Y., Shaffer, D., Forsyth, C., & Germany, M.-L. (2016). Challenges of assessing collaborative problem-solving. In E Care, P. Griffin, & M. Wilson (Eds.), Assessment and teaching of 21st century skills (pp. 75–91). Heidelberg, Germany: Springer. doi: https://doi.org/10.1007/978-3-319-65368-6_5 CrossRefGoogle Scholar
  70. Gu, X., Shao, Y., Guo, X., & Lim, C. P. (2015). Designing a role structure to engage students in computer-supported collaborative learning. The Internet and Higher Education, 24, 13–20. doi:10.1016/j.iheduc.2014.09.002Google Scholar
  71. Guzdial, M., & Turns, J. (2000). Effective discussion through a computer-mediated anchored forum. Journal of the Learning Sciences, 9, 437–469.Google Scholar
  72. Gweon, G., Jain, M., McDonough, J., Raj, B., & Rosé, C. P. (2013). Measuring prevalence of other-oriented transactive contributions using an automated measure of speech style accommodation. International Journal of Computer-Supported Collaborative Learning, 8, 245–265. doi: https://doi.org/10.1007/s11412-013-9172-5 CrossRefGoogle Scholar
  73. Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66, 64–74. doi: https://doi.org/10.1119/1.18809 CrossRefGoogle Scholar
  74. Han, J., Pei, J., & Kamber, M. (Eds.). (2012). Data mining: Concepts and techniques. Boston, MA: Elsevier.Google Scholar
  75. Hare, A. P. (1994). Types of roles in small groups: A bit of history and a current perspective. Small Group Research, 25, 433–448. doi: https://doi.org/10.1177/1046496494253005 CrossRefGoogle Scholar
  76. Hatano, G. (1993). Commentary: Time to merge Vygotskian and constructivist conceptions of knowledge acquisition. In E. A. Forman, N. Minick, & C. A. Stone (Eds.), Contexts for learning: Sociocultural dynamics in children’s development (pp. 153–166). New York, NY, US: Oxford University Press.Google Scholar
  77. Haviland, S. E., & Clark, H. H. (1974). What’s new? Acquiring new information as a process in comprehension. Journal of Verbal Learning and Verbal Behavior, 13, 512–521. doi: https://doi.org/10.1016/S0022-5371(74)80003-4 CrossRefGoogle Scholar
  78. Hempelman, C. F., Dufty, D., McCarthy, P., Graesser, A. C., Cai, Z., & McNamara, D. S. (2005). Using LSA to automatically identify givenness and newness of noun-phrases in written discourse. In B. Bara (Ed.), Proceedings of the 27th Annual Meeting of the Cognitive Science Society (pp. 941–946). Mahwah, NJ: Erlbaum.Google Scholar
  79. Hennig, C. (2007). Cluster-wise assessment of cluster stability. Computational Statistics and Data Analysis, 52, 258–271. doi: https://doi.org/10.1016/j.csda.2006.11.025 CrossRefGoogle Scholar
  80. Hennig, C. (2015). fpc: Flexible procedures for clustering (Version 2.1-10). Retrieved from https://cran.r-project.org/web/packages/fpc/index.html
  81. Hennig, C., Meila, M., Murtagh, F., & Rocci, R. (Eds.). (2015). Handbook of cluster analysis. New York, NY: CRC Press.Google Scholar
  82. Hesse, F., Care, E., Buder, J., Sassenberg, K., & Griffin, P. (2015). A framework for teachable collaborative problem solving skills. In P. Griffin & E. Care (Eds.), Assessment and teaching of 21st century skills (pp. 37–56). Amsterdam, The Netherlands: Springer. doi: https://doi.org/10.1007/978-94-017-9395-7_2 CrossRefGoogle Scholar
  83. Hew, K. F., Cheung, W. S., & Ng, C. S. L. (2010). Student contribution in asynchronous online discussion: a review of the research and empirical exploration. Instructional Science, 38, 571–606. doi: https://doi.org/10.1007/s11251-008-9087-0 CrossRefGoogle Scholar
  84. Hmelo-Silver, C. E., & Barrows, H. S. (2008). Facilitating collaborative knowledge building. Cognition and Instruction, 26, 48–94. doi: https://doi.org/10.1080/07370000701798495 CrossRefGoogle Scholar
  85. Ho, S. M., Hancock, J. T., Booth, C., Burmester, M., Liu, X., & Timmarajus, S. S. (2016). Demystifying insider threat: Language-action cues in group dynamics. In 2016 49th Hawaii International Conference on System Sciences (HICSS) (pp. 2729–2738). Piscataway, NJ: IEEE Press. doi: https://doi.org/10.1109/HICSS.2016.343
  86. Hoadley, C. (2010). Roles, design, and the nature of CSCL. Computers in Human Behavior, 26, 551–555. doi: https://doi.org/10.1016/j.chb.2009.08.012 CrossRefGoogle Scholar
  87. Hornik, K., & Böhm, W. (2016). clue: Cluster ensembles (Version 0.3-51). Retrieved from https://cran.r-project.org/web/packages/clue/index.html
  88. Howley, I., & Mayfield, E. (2011). Missing something? Authority in collaborative learning. In Proceedings of the 9th International Computer Supported Collaborative Learning Conference (Vol. 1, pp. 336–373). New York, NY: International Society of the Learning Sciences.Google Scholar
  89. Howley, I., Mayfield, E., & Rosé, C. P. (2013a). Linguistic analysis methods for studying small groups. In C. E. Hmelo-Silver, C. A. Chinn, & A. M. O’Donnell (Eds.), The international handbook of collaborative learning (pp. 184–203). New York, NY: Routledge.Google Scholar
  90. Howley, I., Mayfield, E., Rosé, C. P., & Strijbos, J.-W. (2013b). A multivocal process analysis of social positioning in study group interactions. In D. Suthers, K. Lund, C. P. Rose, C. Teplovs, & N. Law (Eds.), Productive multivocality in the analysis of group interactions (Vol. 15, pp. 205–223). New York, NY: Springer.CrossRefGoogle Scholar
  91. Hrastinski, S. (2008). What is online learner participation? A literature review. Computers & Education, 51, 1755–1765. doi: https://doi.org/10.1016/j.compedu.2008.05.005 CrossRefGoogle Scholar
  92. Hu, X., Cai, Z., Wiemer-Hastings, P., Graesser, A. C., & McNamara, D. S. (2007). Strengths, limitations, and extensions of LSA. In T. K. Landauer, D. S. McNamara, S. Dennis, & W. Kintsch (Eds.), Handbook of latent semantic analysis (pp. 401–426). New York, NY: Erlbaum.Google Scholar
  93. Hu, X., Zhang, X., Lu, C., Park, E. K., & Zhou, X. (2009). Exploiting Wikipedia as external knowledge for document clustering. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 389–396). New York, NY, USA: ACM. doi: https://doi.org/10.1145/1557019.1557066 CrossRefGoogle Scholar
  94. Hubert, L. J., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193–218. doi: https://doi.org/10.1007/BF01908075 CrossRefGoogle Scholar
  95. Jahnke, I. (2010). Dynamics of social roles in a knowledge management community. Computers in Human Behavior, 26, 533–546. doi: https://doi.org/10.1016/j.chb.2009.08.010 CrossRefGoogle Scholar
  96. Janis, I. L. (1983). Groupthink: Psychological studies of policy decisions and fiascoes. Boston, MA: Houghton Mifflin.Google Scholar
  97. Janssen, J., Erkens, G., Kirschner, P. A., & Kanselaar, G. (2011). Multilevel analysis in CSCL research. In S. Puntambekar, G. Erkens, & C. Hmelo-Silver (Eds.), Analyzing interactions in CSCL: Methods, approaches and issues (pp. 187–205). New York, NY: Springer. doi: https://doi.org/10.1007/978-1-4419-7710-6_9 CrossRefGoogle Scholar
  98. Järvelä, S., Hurme, T. R., & Järvelä, H. (2011). Self-regulation and motivation in computer supported collaborative learning environments. In S. Ludvigsen, S. Lund, I. Rasmussen, & R. Säljö (Eds.), Learning across sites: New tools, infrastructures and practices (pp. 330–345). New York, NY: Routledge.Google Scholar
  99. Joksimović, S., Dowell, N. M., Skypnyk, O., Kovanović, V., Gašević, D., Dawson, S., & Graesser, A. C. (2015). How do you connect? Analysis of social capital accumulation in connectivist MOOCs. In Proceedings from the 5th International Learning Analytics and Knowledge (LAK) Conference (pp. 66–68). New York, NY: ACM.Google Scholar
  100. Joksimović, S., Dowell, N. M., Poquet, O., Kovanović, V., Gašević, D., Dawson, S., & Graesser, A. C. (2018). Exploring development of social capital in a cMOOC through language and discourse. Internet and Higher Education, 36, 54–64.  https://doi.org/10.1016/j.iheduc.2017.09.004
  101. Joshi, M., & Rosé, C. P. (2007). Using transactivity in conversation summarization in educational dialogue. In Proceedings of the SLaTE Workshop on Speech and Language Technology in Education (pp. 53–56). Farmington, PA: ISCA.Google Scholar
  102. Kapur, M., Voiklis, J., & Kinzer, C. K. (2011). A complexity-grounded model for the emergence of convergence in CSCL groups. In S. Puntambekar, G. Erkens, & C. Hmelo-Silver (Eds.), Analyzing interactions in CSCL: Methods, approaches and issues (pp. 3–23). New York, NY: Springer. doi: https://doi.org/10.1007/978-1-4419-7710-6_1 CrossRefGoogle Scholar
  103. Kaufman, L., & Rousseeuw, P. J. (2005). Finding groups in data: An introduction to cluster analysis. Hoboken, NJ: Wiley-Interscience.Google Scholar
  104. Kirschner, F., Paas, F., & Kirschner, P. A. (2009). A cognitive-load approach to collaborative learning: United brains for complex tasks. Educational Psychology Review, 21, 31–42. doi: https://doi.org/10.1007/s10648-008-9095-2 CrossRefGoogle Scholar
  105. Kirschner, P. A., Beers, P. J., Boshuizen, H. P. A., & Gijselaers, W. H. (2008). Coercing shared knowledge in collaborative learning environments. Computers in Human Behavior, 24, 403–420. doi: https://doi.org/10.1016/j.chb.2007.01.028 CrossRefGoogle Scholar
  106. Klein, G., Feltovich, P. J., Bradshaw, J. M., & Woods, D. D. (2005). Common ground and coordination in joint activity. In W. B. Rouse & K. R. Boff (Eds.), Organizational simulation (pp. 139–184). Hoboken, NJ, USA: Wiley. doi: https://doi.org/10.1002/0471739448.ch6 CrossRefGoogle Scholar
  107. Korkmaz, S., Goksuluk, D., & Zararsiz, G. (2015). MVN: Multivariate normality tests (Version 4.0). Retrieved from https://cran.r-project.org/web/packages/MVN/index.html
  108. Kotrlik, J. W., Williams, H. A., & Jabor, M. K. (2011). Reporting and interpreting effect size in quantitative agricultural education research. Journal of Agricultural Education, 52, 132–142. doi: https://doi.org/10.5032/jae.2011.01132 CrossRefGoogle Scholar
  109. Kreijns, K., Kirschner, P. A., & Jochems, W. (2003). Identifying the pitfalls for social interaction in computer-supported collaborative learning environments: A review of the research. Computers in Human Behavior, 19, 335–353. doi: https://doi.org/10.1016/S0747-5632(02)00057-2 CrossRefGoogle Scholar
  110. Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. New York, NY: Springer. Retrieved from link.springer.com/10.1007/978-1-4614-6849-3 CrossRefGoogle Scholar
  111. Landauer, T. K., McNamara, D. S., Dennis, S., & Kintsch, W. (2007). Handbook of latent semantic analysis. Mahwah, NJ: Erlbaum.Google Scholar
  112. Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  113. Lehmann-Willenbrock, N., Beck, S. J., & Kauffeld, S. (2016). Emergent team roles in organizational meetings: Identifying communication patterns via cluster analysis. Communication Studies, 67, 37–57. doi: https://doi.org/10.1080/10510974.2015.1074087 CrossRefGoogle Scholar
  114. Lipponen, L., Rahikainen, M., Lallimo, J., & Hakkarainen, K. (2003). Patterns of participation and discourse in elementary students’ computer-supported collaborative learning. Learning and Instruction, 13, 487–509. doi: https://doi.org/10.1016/S0959-4752(02)00042-7 CrossRefGoogle Scholar
  115. Marcos-Garcia, J.-A., Martinez-Mones, A., & Dimitriadis, Y. (2015). DESPRO: A method based on roles to provide collaboration analysis support adapted to the participants in CSCL situations. Computers & Education, 82, 335–353. doi: https://doi.org/10.1016/j.compedu.2014.10.027 CrossRefGoogle Scholar
  116. McCarthy, P., Dufty, D., Hempelman, C. F., Cai, Z., Graesser, A. C., & McNamara, D. (2012). Newness and givenness of information: Automated identification in written discourse. In P. M. McCarthy & C. Boonthum (Eds.), Applied natural language processing and content analysis: Identification, investigation, and resolution (pp. 475–478). Hershey, PA: IGI Global.CrossRefGoogle Scholar
  117. Mesmer-Magnus, J. R., & Dechurch, L. A. (2009). Information sharing and team performance: A meta-analysis. Journal of Applied Psychology, 94, 535–546. doi: https://doi.org/10.1037/a0013773 PubMedCrossRefGoogle Scholar
  118. Mirriahi, N., Liaqat, D., Dawson, S., & Gašević, D. (2016). Uncovering student learning profiles with a video annotation tool: Reflective learning with and without instructional norms. Educational Technology Research and Development, 64, 1083–1106. doi: https://doi.org/10.1007/s11423-016-9449-2
  119. Molenaar, I., Chiu, M. M., Sleegers, P., & van Boxtel, C. (2011). Scaffolding of small groups’ metacognitive activities with an avatar. International Journal of Computer-Supported Collaborative Learning, 6, 601–624. doi: https://doi.org/10.1007/s11412-011-9130-z PubMedPubMedCentralCrossRefGoogle Scholar
  120. Mostow, J., & Beck, J. (2006). Some useful tactics to modify, map and mine data from intelligent tutors. Natural Language Engineering, 12, 195–208. doi: https://doi.org/10.1017/S1351324906004153 CrossRefGoogle Scholar
  121. Mudrack, P. E., & Farrell, G. M. (1995). An examination of functional role behavior and its consequences for individuals in group settings. Small Group Research, 26, 542–571. doi: https://doi.org/10.1177/1046496495264005 CrossRefGoogle Scholar
  122. Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4, 133–142. doi: https://doi.org/10.1111/j.2041-210x.2012.00261.x CrossRefGoogle Scholar
  123. Nolker, R. D., & Zhou, L. (2005). Social computing and weighting to identify member roles in online communities. In The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05) (pp. 87–93). Piscataway, NJ: IEEE Press. doi: https://doi.org/10.1109/WI.2005.134
  124. Nonnecke, B., & Preece, J. (2000). Lurker demographics: Counting the silent. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 73–80). New York, NY, USA: ACM. doi: https://doi.org/10.1145/332040.332409
  125. OECD. (2013). PISA 2015 collaborative problem solving framework. Oxford, UK: OECD.Google Scholar
  126. Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., . . . Wagner, H. (2016). vegan: Community ecology package (Version 2.4-0). Retrieved from https://cran.r-project.org/web/packages/vegan/index.html
  127. Pennebaker, J. W., Gosling, S. D., & Ferrell, J. D. (2013). Daily online testing in large classes: Boosting college performance whereas reducing achievement gaps. PLoS ONE, 8, 79774. doi: https://doi.org/10.1371/journal.pone.0079774 CrossRefGoogle Scholar
  128. Piaget, J. (1993). The moral judgement of the child. New York, NY: Simon & Schuster.Google Scholar
  129. Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects Models in S and S-Plus. New York, NY: Springer.CrossRefGoogle Scholar
  130. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S., & Van Willigen, B. (2016). nlme: Linear and nonlinear mixed effects models (Version 3.1-128). Retrieved from https://cran.r-project.org/web/packages/nlme/index.html
  131. Pintrich, P. R. (2000). Multiple goals, multiple pathways: The role of goal orientation in learning and achievement. Journal of Educational Psychology, 92, 544–555. doi: https://doi.org/10.1037/0022-0663.92.3.544 CrossRefGoogle Scholar
  132. Preece, J., Nonnecke, B., & Andrews, D. (2004). The top five reasons for lurking: improving community experiences for everyone. Computers in Human Behavior, 20, 201–223. doi: https://doi.org/10.1016/j.chb.2003.10.015 CrossRefGoogle Scholar
  133. Prince, E. F. (1981). Toward a taxonomy of given–new information. In P. Cole (Ed.), Radical pragmatics (pp. 223–255). New York, NY: Academic Press.Google Scholar
  134. Risser, H. S., & Bottoms, S. (2014). “Newbies” and “celebrities”: Detecting social roles in an online network of teachers via participation patterns. International Journal of Computer-Supported Collaborative Learning, 9, 433–450.  https://doi.org/10.1007/s11412-014-9197-4 CrossRefGoogle Scholar
  135. Roschelle, J. (1992). Learning by collaborating: convergent conceptual change. Journal of the Learning Sciences, 2, 235–276. doi:10.1207/s15327809jls0203_1Google Scholar
  136. Roschelle, J., & Teasley, S. D. (1995). The construction of shared knowledge in collaborative problem- solving. In C. E. O’Malley (Ed.), Computer-supported collaborative learning (pp. 67–97). Berlin, Germany: Springer.Google Scholar
  137. Rosé, C., Wang, Y.-C., Cui, Y., Arguello, J., Stegmann, K., Weinberger, A., & Fischer, F. (2008). Analyzing collaborative learning processes automatically: Exploiting the advances of computational linguistics in computer-supported collaborative learning. International Journal of Computer-Supported Collaborative Learning, 3, 237–271. doi: https://doi.org/10.1007/s11412-007-9034-0 CrossRefGoogle Scholar
  138. Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65.CrossRefGoogle Scholar
  139. Salas, E., Rosen, M. A., Burke, C. S., Nicholson, D., & Howse, W. R. (2007). Markers for enhancing team cognition in complex environments: The power of team performance diagnosis. Aviation, Space, and Environmental Medicine, 78, B77–B85.PubMedGoogle Scholar
  140. Salazar, A. J. (1996). An analysis of the development and evolution of roles in the small group. Small Group Research, 27, 475–503. doi: https://doi.org/10.1177/1046496496274001 CrossRefGoogle Scholar
  141. Samsonovich, A. V. (2014). Semantic cross-correlation as a measure of social interaction. Biologically Inspired Cognitive Architectures, 7(Suppl. C), 1–8. doi: https://doi.org/10.1016/j.bica.2013.12.001 CrossRefGoogle Scholar
  142. Sapru, A., & Bourlard, H. (2015). Automatic recognition of emergent social roles in small group interactions. IEEE Transactions on Multimedia, 17, 746–760. doi: https://doi.org/10.1109/TMM.2015.2408437 CrossRefGoogle Scholar
  143. Sarmiento, J. W., & Shumar, W. (2010). Boundaries and roles: Positioning and social location in the Virtual Math Teams (VMT) online community. Computers in Human Behavior, 26, 524–532. doi: https://doi.org/10.1016/j.chb.2009.08.009 CrossRefGoogle Scholar
  144. Shaffer, D. (2006). How computer games help children learn. New York, NY: Palgrave Macmillan.CrossRefGoogle Scholar
  145. Shaffer, D., & Graesser, A. C. (2010). Using a quantitative model of participation in a community of practice to direct automated mentoring in an ill-defined domain. In C. Lynch, K. Ashley, T. Mitrovic, V. Dimitrova, N. Pinkwart, & V. Aleven (Eds.), Proceedings of the 4th International Workshop on Intelligent Tutoring Systems and Ill-Defined Domains (pp. 61–68). Pittsburgh, PA: Workshop on Intelligent Tutoring Systems (ITS).Google Scholar
  146. Shaffer, D., Hatfield, D., Svarovsky, G. N., Nash, P., Nulty, A., Bagley, E., . . . Mislevy, R. (2009). Epistemic network analysis: A prototype for 21st-century assessment of learning. International Journal of Learning and Media, 1, 33–53. doi: https://doi.org/10.1162/ijlm.2009.0013
  147. Siemens, G. (2005). Connectivism: A learning theory for the digital age. International Journal of Instructional Technology and Distance Learning, 2(1), 1. Retrieved from http://itdl.org/Journal/Jan_05/article01.htm Google Scholar
  148. Spada, H. (2010). Of scripts, roles, positions, and models. Computers in Human Behavior, 26, 547–550. doi: https://doi.org/10.1016/j.chb.2009.08.011 CrossRefGoogle Scholar
  149. Stahl, G. (2002). Rediscovering CSCL. In T. Koschmann, R. Hall, & N. Miyake (Eds.), CSCL 2: Carrying forward the conversation (pp. 169–181). Mahwah, NJ: Erlbaum.Google Scholar
  150. Stahl, G. (2005). Group cognition in computer-assisted collaborative learning. Journal of Computer Assisted Learning, 21, 79–90. doi: https://doi.org/10.1111/j.1365-2729.2005.00115.x CrossRefGoogle Scholar
  151. Stahl, G. (2010). Group cognition as a foundation for the new science of learning. In M. S. Khine & I. M. Saleh (Eds.), New science of learning (pp. 23–44). New York, NY: Springer. doi: https://doi.org/10.1007/978-1-4419-5716-0_2 CrossRefGoogle Scholar
  152. Stahl, G. (2013). Learning across levels. International Journal of Computer-Supported Collaborative Learning, 8, 1–12. doi: https://doi.org/10.1007/s11412-013-9169-0
  153. Stahl, G., Law, N., Cress, U., & Ludvigsen, S. (2014). Analyzing roles of individuals in small-group collaboration processes. International Journal of Computer-Supported Collaborative Learning, 9, 365–370. doi: https://doi.org/10.1007/s11412-014-9204-9 CrossRefGoogle Scholar
  154. Stahl, G., & Rosé, C. P. (2013). Theories of team cognition: Cross-disciplinary perspectives. In E. Salas, S. M. Fiore, & M. P. Letsky (Eds.), Theories of team cognition: Cross-disciplinary perspectives (pp. 111–134). New York, NY: Routledge.Google Scholar
  155. Stasser, G., & Titus, W. (1985). Pooling of unshared information in group decision making: Biased information sampling during discussion. Journal of Personality and Social Psychology, 48, 1467–1478. doi: https://doi.org/10.1037/0022-3514.48.6.1467 CrossRefGoogle Scholar
  156. Steyvers, M., & Griffiths, T. (2007). Probabilistic topic models. In T. K. Landauer, D. S. McNamara, S. Dennis, & W. Kintsch (Eds.), Latent semantic analysis: A road to meaning (pp. 1–15). Mahwah, NJ: Erlbaum.Google Scholar
  157. Strijbos, J.-W., & De Laat, M. F. (2010). Developing the role concept for computer-supported collaborative learning: An explorative synthesis. Computers in Human Behavior, 26, 495–505. doi: https://doi.org/10.1016/j.chb.2009.08.014 CrossRefGoogle Scholar
  158. Strijbos, J.-W., Martens, R. L., Jochems, W. M. G., & Broers, N. J. (2004). The effect of functional roles on group efficiency using multilevel modeling and content analysis to investigate computer-supported collaboration in small groups. Small Group Research, 35, 195–229. doi: https://doi.org/10.1177/1046496403260843 CrossRefGoogle Scholar
  159. Strijbos, J.-W., Martens, R. L., Prins, F. J., & Jochems, W. M. G. (2006). Content analysis: What are they talking about? Computers & Education, 46, 29–48. doi: https://doi.org/10.1016/j.compedu.2005.04.002 CrossRefGoogle Scholar
  160. Strijbos, J.-W., & Weinberger, A. (2010). Emerging and scripted roles in computer-supported collaborative learning. Computers in Human Behavior, 26, 491–494. doi: https://doi.org/10.1016/j.chb.2009.08.006 CrossRefGoogle Scholar
  161. Stuetzer, C. M., Koehler, T., Carley, K. M., & Thiem, G. (2013). “Brokering” behavior in collaborative learning systems. Procedia: Social and Behavioral Sciences, 100, 94–107. doi: https://doi.org/10.1016/j.sbspro.2013.10.702 CrossRefGoogle Scholar
  162. Suthers, D. (2006). A qualitative analysis of collaborative knowledge construction through shared representations. Research and Practice in Technology Enhanced Learning, 1, 315–337. doi: https://doi.org/10.1142/S1793206806000147 CrossRefGoogle Scholar
  163. Suthers, D. (2015). From contingencies to network-level phenomena: Multilevel analysis of activity and actors in heterogeneous networked learning environments. In Proceedings of the Fifth International Conference on Learning Analytics and Knowledge (pp. 368–377). New York, NY, USA: ACM. doi: https://doi.org/10.1145/2723576.2723626
  164. Suthers, D. D., & Desiato, C. (2012). Exposing chat features through analysis of uptake between contributions. In 2012 45th Hawaii International Conference on System Sciences (pp. 3368–3377). Piscataway, NJ: IEEE Press. doi: https://doi.org/10.1109/HICSS.2012.274
  165. Suthers, D., Dwyer, N., Medina, R., & Vatrapu, R. (2010). A framework for conceptualizing, representing, and analyzing distributed interaction. International Journal of Computer-Supported Collaborative Learning, 5, 5–42. doi: https://doi.org/10.1007/s11412-009-9081-9 CrossRefGoogle Scholar
  166. Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics. Boston, MA: Pearson.Google Scholar
  167. Taniar, T. (2006). Research and trends in data mining technologies and applications. London, UK: Idea Group.Google Scholar
  168. Teasley, S. D. (1997). Talking about reasoning: How important is the peer in peer collaboration? In Lauren B. Resnick, R. Säljö, C. Pontecorvo, & B. Burge (Eds.), Discourse, tools and reasoning (pp. 361–384). Berlin, Germany: Springer. doi: https://doi.org/10.1007/978-3-662-03362-3_16 CrossRefGoogle Scholar
  169. Tibshirani, R., & Walther, G. (2005). Cluster validation by prediction strength. Journal of Computational and Graphical Statistics, 14, 511–528. doi: https://doi.org/10.1198/106186005X59243 CrossRefGoogle Scholar
  170. Valle, R. del, & Duffy, T. M. (2007). Online learning: Learner characteristics and their approaches to managing learning. Instructional Science, 37, 129–149. doi: https://doi.org/10.1007/s11251-007-9039-0
  171. Van Boxtel, C. (2004). Studying peer interaction from three perspectives. In J. van der Linden & P. Renshaw (Eds.), Dialogic learning (pp. 125–143). New York, NY: Springer. doi: https://doi.org/10.1007/1-4020-1931-9_7 CrossRefGoogle Scholar
  172. Van den Bossche, P., Gijselaers, W. H., Segers, M., & Kirschner, P. A. (2006). Social and cognitive factors driving teamwork in collaborative learning environments team learning beliefs and behaviors. Small Group Research, 37, 490–521. doi: https://doi.org/10.1177/1046496406292938 CrossRefGoogle Scholar
  173. Volet, S., Summers, M., & Thurman, J. (2009). High-level co-regulation in collaborative learning: How does it emerge and how is it sustained? Learning and Instruction, 19, 128–143. doi: https://doi.org/10.1016/j.learninstruc.2008.03.001 CrossRefGoogle Scholar
  174. Volet, S., Vauras, M., Salo, A.-E., & Khosa, D. (2017). Individual contributions in student-led collaborative learning: Insights from two analytical approaches to explain the quality of group outcome. Learning and Individual Differences, 53, 79–92. doi: https://doi.org/10.1016/j.lindif.2016.11.006 CrossRefGoogle Scholar
  175. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes (M. Cole, V. John-Steiner, S. Scribner, & E. Souberman, Eds.). Cambridge, MA: Harvard University Press.Google Scholar
  176. Wen, M., Yang, D., & Rosé, C. (2014). Linguistic reflections of student engagement in massive open online courses. In Proceedings of the 14th International Conference on Web and Social Media (pp. 525–534). Ann Arbor, MI: AAAI. Retrieved from http://meefen.github.io/notes/2014/05/01/Wen2014/
  177. Winne, P. H. (2013). Metacognition in computer-supported collaborative inquiry. In C. Hmelo-Silver, C. A. Chinn, C. K. K. Chan, & A. O’Donnell (Eds.), The international handbook of collaborative learning (pp. 462–479). New York, NY: Taylor & Francis.Google Scholar
  178. Wise, A. F., Speer, J., Marbouti, F., & Hsiao, Y.-T. (2012). Broadening the notion of participation in online discussions: examining patterns in learners’ online listening behaviors. Instructional Science, 41, 323–343. doi: https://doi.org/10.1007/s11251-012-9230-9 CrossRefGoogle Scholar
  179. Wittenbaum, G. M., Hollingshead, A. B., & Botero, I. C. (2004). From cooperative to motivated information sharing in groups: moving beyond the hidden profile paradigm. Communication Monographs, 71, 286–310. doi: https://doi.org/10.1080/0363452042000299894 CrossRefGoogle Scholar
  180. Wittenbaum, G. M., & Stasser, G. (1996). Management of information in small groups. In J. L. Nye & A. M. Brower (Eds.), What’s social about social cognition? Research on socially shared cognition in small groups (pp. 3–28). Thousand Oaks, CA: Sage. Retrieved from hdl.handle.net/2027/Google Scholar
  181. Xie, K., Yu, C., & Bradshaw, A. C. (2014). Impacts of role assignment and participation in asynchronous discussions in college-level online classes. The Internet and Higher Education, 20, 10–19. doi: https://doi.org/10.1016/j.iheduc.2013.09.003 CrossRefGoogle Scholar
  182. Zimmerman, B. J. (2001). Theories of self-regulated learning and academic achievement: An overview and analysis. In B. J. Zimmerman & D. H. Schunk (Eds.), Self-regulated learning and academic achievement: Theoretical perspectives (pp. 1–37). Mahwah, NJ: Erlbaum. Retrieved from http://hdl.handle.net/2027/ Google Scholar
  183. Zumel, N., Mount, J., & Porzak, J. (2014). Practical data science with R. Shelter Island, NY: Manning.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Nia M. M. Dowell
    • 1
  • Tristan M. Nixon
    • 2
  • Arthur C. Graesser
    • 3
  1. 1.School of InformationUniversity of MichiganAnn ArborUSA
  2. 2.Ann ArborUSA
  3. 3.University of MemphisMemphisUSA

Personalised recommendations