Advertisement

The Differential Time-Varying Effect Model (DTVEM): A tool for diagnosing and modeling time lags in intensive longitudinal data

  • Nicholas C. Jacobson
  • Sy-Miin Chow
  • Michelle G. Newman
Article

Abstract

With the recent growth in intensive longitudinal designs and the corresponding demand for methods to analyze such data, there has never been a more pressing need for user-friendly analytic tools that can identify and estimate optimal time lags in intensive longitudinal data. The available standard exploratory methods to identify optimal time lags within univariate and multivariate multiple-subject time series are greatly underpowered at the group (i.e., population) level. We describe a hybrid exploratory–confirmatory tool, referred to herein as the Differential Time-Varying Effect Model (DTVEM), which features a convenient user-accessible function to identify optimal time lags and estimate these lags within a state-space framework. Data from an empirical ecological momentary assessment study are then used to demonstrate the utility of the proposed tool in identifying the optimal time lag for studying the linkages between nervousness and heart rate in a group of undergraduate students. Using a simulation study, we illustrate the effectiveness of DTVEM in identifying optimal lag structures in multiple-subject time-series data with missingness, as well as its strengths and limitations as a hybrid exploratory–confirmatory approach, relative to other existing approaches.

Keywords

Lag Time-series analysis Vector autoregressive modeling Multivariate analysis Splines 

References

  1. Ahmad, I., Leelahanon, S., & Li, Q. (2005). Efficient estimation of a semiparametric partially linear varying coefficient model. Annals of Statistics, 33, 258–283.  https://doi.org/10.1214/009053604000000931 CrossRefGoogle Scholar
  2. Armstrong, A. W., Ulukan, S., Weiner, M., Mostafa, M., Shaheen, H., Nakhla, I., . . . Riddle, M. S. (2010). A randomized, double-blind, placebo-controlled study evaluating the efficacy and safety of Rifaximin for the prevention of travelers’ diarrhea in US military personnel deployed to Incirlik Air Base, Incirlik, Turkey. Journal of Travel Medicine, 17, 392–394.  https://doi.org/10.1111/j.1708-8305.2010.00462.x
  3. Bar-Shalom, Y., Li, X. R., & Kirubarajan, T. (2001). Estimation with applications to tracking and navigation: Theory algorithms and software. New York, NY: Wiley.CrossRefGoogle Scholar
  4. Barrett, L. F., Quigley, K. S., Bliss-Moreau, E., & Aronson, K. R. (2004). Interoceptive sensitivity and self-reports of emotional experience. Journal of Personality and Social Psychology, 87, 684–697.  https://doi.org/10.1037/0022-3514.87.5.684
  5. Beidel, D. C., Neal, A. M., & Lederer, A. S. (1991). The feasibility and validity of a daily diary for the assessment of anxiety in children. Behavior Therapy, 22, 505–517.  https://doi.org/10.1016/S0005-7894(05)80342-9 CrossRefGoogle Scholar
  6. Boker, S. M., & Graham, J. (1998). A dynamical systems analysis of adolescent substance abuse. Multivariate Behavioral Research, 33, 479–507.  https://doi.org/10.1207/s15327906mbr3304_3 CrossRefPubMedGoogle Scholar
  7. Bolger, N., & Laurenceau, J.-P. (2013). Intensive longitudinal methods: An introduction to diary and experience sampling research. New York, NY: Guilford Press.Google Scholar
  8. Bolkhovsky, J. B., Scully, C. G., & Chon, K. H. (2012). Statistical analysis of heart rate and heart rate variability monitoring through the use of smart phone cameras. Paper presented at the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego, CA.Google Scholar
  9. Bookstein, F. L. (1989). Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 567–585.  https://doi.org/10.1109/34.24792 CrossRefGoogle Scholar
  10. Bottan, N. L., & Perez Truglia, R. (2011). Deconstructing the hedonic treadmill: Is happiness autoregressive? Journal of Socio-Economics, 40, 224–236.  https://doi.org/10.1016/j.socec.2011.01.007 CrossRefGoogle Scholar
  11. Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis, forecasting and control (Revised ed.). Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  12. Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (2013). Time series analysis: Forecasting and control (4th ed.). Hoboken, NJ: Wiley.Google Scholar
  13. Bringmann, L. F., Hamaker, E. L., Vigo, D. E., Aubert, A., Borsboom, D., & Tuerlinckx, F. (2017). Changing dynamics: Time-varying autoregressive models using generalized additive modeling. Psychological Methods, 22, 409–425.  https://doi.org/10.1037/met0000085 CrossRefPubMedGoogle Scholar
  14. Brockwell, P. J., & Davis, R. A. (2002). Introduction to time series and forecasting (2nd ed.). New York, NY: Springer.CrossRefGoogle Scholar
  15. Brosschot, J. F., & Thayer, J. F. (2003). Heart rate response is longer after negative emotions than after positive emotions. International Journal of Psychophysiology, 50, 181–187.CrossRefPubMedGoogle Scholar
  16. Brosschot, J. F., Van Dijk, E., & Thayer, J. F. (2007). Daily worry is related to low heart rate variability during waking and the subsequent nocturnal sleep period. International Journal of Psychophysiology, 63, 39–47.  https://doi.org/10.1016/j.ijpsycho.2006.07.016 CrossRefPubMedGoogle Scholar
  17. Browne, M. W., & Nesselroade, J. R. (2005). Representing psychological processes with dynamic factor models: Some promising uses and extensions of autoregressive moving average time series models. In O. Maydeu & J. J. McArdle (Eds.), Contemporary psychometrics: A festschrift for Roderick P. McDonald (pp. 415–452). Mahwah, NJ: Erlbaum.Google Scholar
  18. Buckner, J. D., Crosby, R. D., Wonderlich, S. A., & Schmidt, N. B. (2012). Social anxiety and cannabis use: An analysis from ecological momentary assessment. Journal of Anxiety Disorders, 26, 297–304.CrossRefPubMedGoogle Scholar
  19. Buysse, D. J., Thompson, W., Scott, J., Franzen, P. L., Germain, A., Hall, M., . . . Kupfer, D. J. (2007). Daytime symptoms in primary insomnia: A prospective analysis using ecological momentary assessment. Sleep Medicine, 8, 198–208.Google Scholar
  20. Cannon, W. B. (1927). The James–Lange theory of emotions: a critical examination and an alternative theory. American Journal of Psychology, 39, 106–124.  https://doi.org/10.2307/1415404 CrossRefGoogle Scholar
  21. Carels, R. A., Musher-Eizenman, D., Cacciapaglia, H., Perez-Benitez, C. I., Christie, S., & O’Brien, W. (2004). Psychosocial functioning and physical symptoms in heart failure patients: A within-individual approach. Journal of Psychosomatic Research, 56, 95–101.  https://doi.org/10.1016/S0022-3999(03)00041-2 CrossRefPubMedGoogle Scholar
  22. Chatfield, C. (2013). The analysis of time series: An introduction: CRC press.Google Scholar
  23. Chow, S.-M., & Zhang, G. (2013). Nonlinear regime-switching state-space (RSSS) models. Psychometrika, 78, 740–768.  https://doi.org/10.1007/s11336-013-9330-8 CrossRefPubMedGoogle Scholar
  24. Chow, S.-M., Hamagani, F., & Nesselroade, J. R. (2007). Age differences in dynamical emotion–cognition linkages. Psychology and Aging, 22, 765–780.  https://doi.org/10.1037/0882-7974.22.4.765 CrossRefPubMedGoogle Scholar
  25. Chow, S.-M., Haltigan, J. D., & Messinger, D. S. (2010). Dynamic patterns of infant–parent interactions during Face-to-Face and Still-Face episodes. Emotion, 10, 101–114.  https://doi.org/10.1037/a0017824 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chow, S.-M., Ho, M.-H. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalences and differences between structural equation and state-space modeling frameworks. Structural Equation Modeling, 17, 303–332.  https://doi.org/10.1080/10705511003661553 CrossRefGoogle Scholar
  27. Chow, S.-M., Zu, J., Shifren, K., & Zhang, G. (2011). Dynamic factor analysis models with time-varying parameters. Multivariate Behavioral Research, 46, 303–339.  https://doi.org/10.1080/00273171.2011.563697 CrossRefPubMedGoogle Scholar
  28. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
  29. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). New York, NY: Routledge.Google Scholar
  30. Crainiceanu, C. M., Ruppert, D., Carroll, R. J., Joshi, A., & Goodner, B. (2007). Spatially adaptive Bayesian penalized splines with heteroscedastic errors. Journal of Computational and Graphical Statistics, 16, 265–288.  https://doi.org/10.1198/106186007X208768 CrossRefGoogle Scholar
  31. Cuthbert, B. N., & Insel, T. R. (2013). Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Medicine, 11, 1–8.  https://doi.org/10.1186/1741-7015-11-126 CrossRefGoogle Scholar
  32. de Haan-Rietdijk, S., Voelkle, M. C., Keijsers, L., & Hamaker, E. L. (2017). Discrete- versus continuous-time modeling of unequally spaced experience sampling method data. Frontiers in Psychology, 8, 1849.  https://doi.org/10.3389/fpsyg.2017.01849 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Durbin, J., & Koopman, S. J. (2012). Time series analysis by state space methods. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
  34. Ebner-Priemer, U. W., Eid, M., Kleindienst, N., Stabenow, S., & Trull, T. J. (2009). Analytic strategies for understanding affective (in)stability and other dynamic processes in psychopathology. Journal of Abnormal Psychology, 118, 195–202.  https://doi.org/10.1037/a0014868 CrossRefPubMedGoogle Scholar
  35. Epskamp, S., van Borkulo, C. D., van der Veen, D.C., Servaas, M. N., Isvoranu, A.-M., Riese, H., & Cramer, A. O. J. (2018). Personalized network modeling in psychopathology: The importance of contemporaneous and temporal connections. Clinical Psychological Science, 6, 416–427 .  https://doi.org/10.1177/2167702617744325
  36. Frank, B., Jacobson, N. C., Hurley, L., & McKay, D. (2017). A theoretical and empirical modeling of anxiety integrated with RDoC and temporal dynamics. Journal of Anxiety Disorders, 51, 39–46.  https://doi.org/10.1016/j.janxdis.2017.09.002 CrossRefPubMedGoogle Scholar
  37. Gasparrini, A., Armstrong, B., & Kenward, M. G. (2010). Distributed lag non-linear models. Statistics in Medicine, 29, 2224–2234.  https://doi.org/10.1002/sim.3940 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Gates, K. M., Molenaar, P. C., Hillary, F. G., Ram, N., & Rovine, M. J. (2010). Automatic search for fMRI connectivity mapping: An alternative to Granger causality testing using formal equivalences among SEM path modeling, VAR, and unified SEM. NeuroImage, 50, 1118–1125.  https://doi.org/10.1016/j.neuroimage.2009.12.117 CrossRefPubMedGoogle Scholar
  39. Goldstein, H., Healy, M. J. R., & Rasbash, J. (1994). Multilevel time series models with applications to repeated measures data. Statistics in Medicine, 13, 1643–1655.  https://doi.org/10.1002/sim.4780131605 CrossRefPubMedGoogle Scholar
  40. Guttman, L., & Guttman, R. (1965). A new approach to the analysis of growth patterns: The simplex structure of intercorrelations of measurements. Growth, 29, 219–232.Google Scholar
  41. Hamilton, J. D. (1994). Time series analysis. Princeton, NJ: Princeton University Press.Google Scholar
  42. Harvey, A. C. (2001). Forecasting, structural time series models and the Kalman filter. Cambridge, UK: Cambridge University Press.Google Scholar
  43. Hastie, T. J., & Tibshirani, R. J. (1990). Generalized additive models. London, UK: Chapman & Hall.Google Scholar
  44. Hastie, T., & Tibshirani, R. (1993). Varying-coefficient models. Journal of the Royal Statistical Society: Series B, 55, 757–796.  https://doi.org/10.2307/2345993 Google Scholar
  45. Ho, M.-H. R., Shumway, R., & Ombao, H. (2006). The state-space approach to modeling dynamic processes. In T. A. Walls & J. L. Schafer (Eds.), Models for intensive longitudinal data. (pp. 148–175). New York, NY: Oxford University Press.Google Scholar
  46. Hodges, W. F. (2015). The psychophysiology of anxiety. In M. Zuckerman & C. D. Spielberger (Eds.), Emotions and anxiety: New concepts, methods, and applications (pp. 175–194). New York, NY: Psychology Press.Google Scholar
  47. James, G. M. (2002). Generalized linear models with functional predictors. Journal of the Royal Statistical Society: Series B, 64, 411–432.  https://doi.org/10.1111/1467-9868.00342 CrossRefGoogle Scholar
  48. Kelley, K. (2007). Methods for the behavioral, educational, and social sciences: An R package. Behavior Research Methods, 39, 979–984.  https://doi.org/10.3758/bf03192993 CrossRefPubMedGoogle Scholar
  49. Kuiper, R. M., & Ryan, O. (2018). Drawing conclusions from cross-lagged relationships: Re-considering the role of the time-interval. Structural Equation Modeling. Advance online publication.  https://doi.org/10.1080/10705511.2018.1431046
  50. Lang, P. J., McTeague, L. M., & Bradley, M. M. (2016). RDoC, DSM, and the reflex physiology of fear: A bio-dimensional analysis of the anxiety disorders spectrum. Psychophysiology, 53, 336–347.  https://doi.org/10.1111/psyp.12462 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lange, C. G., & James, W. (1922). The emotions (Vol. 1). Baltimore, MD: Williams & Wilkins.Google Scholar
  52. MacCallum, R. C., Kim, C., Malarkey, W. B., & Kiecolt-Glaser, J. K. (1997). Studying multivariate change using multilevel models and latent curve models. Multivariate Behavioral Research, 32, 215–253.  https://doi.org/10.1207/s15327906mbr3203_1 CrossRefPubMedGoogle Scholar
  53. Marsman, M., Borsboom, D., Kruis, J., Epskamp, S., van Bork, R., Waldorp, L. J., . . . Maris, G. (2018). An introduction to network psychometrics: Relating ising network models to item response theory models. Multivariate Behavioral Research, 53, 15–35.  https://doi.org/10.1080/00273171.2017.1379379
  54. Mauss, I., Wilhelm, F., & Gross, J. (2004). Is there less to social anxiety than meets the eye? Emotion experience, expression, and bodily responding. Cognition and Emotion, 18, 631–642.  https://doi.org/10.1080/02699930341000112 CrossRefGoogle Scholar
  55. McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.). London, UK: Chapman & Hall.CrossRefGoogle Scholar
  56. McKeown, G. J., & Sneddon, I. (2014). Modeling continuous self-report measures of perceived emotion using generalized additive mixed models. Psychological Methods, 19, 155–174.  https://doi.org/10.1037/a0034282 CrossRefPubMedGoogle Scholar
  57. Mergler, D., & Valcciukas, J. (1998). Nervous system: Overview. In J. M. Stellman (Ed.), Encyclopaedia of occupational health and safety (4th ed.). Geneva, Switzerland: International Labour Office.Google Scholar
  58. Michel, J.-B., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K., Pickett, J. P., . . . Orwant, J. (2011). Quantitative analysis of culture using millions of digitized books. Science, 331, 176–182.Google Scholar
  59. Molenaar, P. C. M. (1985). A dynamic factor model for the analysis of multivariate time series. Psychometrika, 50, 181–202.  https://doi.org/10.1007/BF02294246 CrossRefGoogle Scholar
  60. Molenaar, P. C. M., & Nesselroade, J. R. (2001). Rotation in the dynamic factor modeling of multivariate stationary time series. Psychometrika, 66, 99–107.  https://doi.org/10.1007/bf02295735 CrossRefGoogle Scholar
  61. Morris, L. W., & Liebert, R. M. (1970). Relationship of cognitive and emotional components of test anxiety to physiological arousal and academic performance. Journal of Consulting and Clinical Psychology, 35, 332–337.  https://doi.org/10.1037/h0030132 CrossRefPubMedGoogle Scholar
  62. Muirhead, R. J. (1985). Estimating a particular function of the multiple correlation coefficient. Journal of the American Statistical Association, 80, 923–925.  https://doi.org/10.1080/01621459.1985.10478204 CrossRefGoogle Scholar
  63. Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., . . . Boker, S. M. (2016). OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika, 81, 535–549.  https://doi.org/10.1007/s11336-014-9435-8
  64. Nesselroade, J. R., & Ford, D. H. (1985). P-technique comes of age. Multivariate, replicated, single-subject designs for research on older adults. Research on Aging, 7, 46–80.CrossRefPubMedGoogle Scholar
  65. Nesselroade, J. R., McArdle, J. J., Aggen, S. H., & Meyers, J. (2001). Dynamic factor analysis modles for representing process in multivariate time-series. In D. M. Moskowitz & S. L. Hershberger (Eds.), Modeling intraindividual variability with repeated measures data: Methods and applications (pp. 235–265). Mahwah, NJ: Erlbaum.Google Scholar
  66. Oud, J. (2004). SEM state space modeling of panel data in discrete and continuous time and its relationship to traditional state space modeling. In K. van Montfort, J. Oud, & A. Satorra (Eds.), Recent developments on structural equation models (Vol. 19, pp. 13–40). Amsterdam, The Netherlands: Springer.  https://doi.org/10.1007/978-1-4020-1958-6_2 CrossRefGoogle Scholar
  67. Reinsel, G. C. (2003). Elements of multivariate time series analysis (Springer Series in Statistics). New York, NY: Springer.Google Scholar
  68. Roche, M. J., Jacobson, N. C., & Pincus, A. L. (2016). Using repeated daily assessments to uncover oscillating patterns and temporally-dynamic triggers in structures of psychopathology: Applications to the DSM-5 alternative model of personality disorders. Journal of Abnormal Psychology, 125, 1090–1102.  https://doi.org/10.1037/abn0000177 CrossRefPubMedGoogle Scholar
  69. Scully, C., Jinseok, L., Meyer, J., Gorbach, A. M., Granquist-Fraser, D., Mendelson, Y., & Chon, K. H. (2012). Physiological parameter monitoring from optical recordings with a mobile phone. IEEE Transactions on Biomedical Engineering, 59, 303–306.  https://doi.org/10.1109/TBME.2011.2163157 CrossRefPubMedGoogle Scholar
  70. Shiffman, S., Stone, A. A., & Hufford, M. R. (2008). Ecological momentary assessment. Annual Review of Clinical Psychology, 4, 1–32.  https://doi.org/10.1146/annurev.clinpsy.3.022806.091415 CrossRefPubMedGoogle Scholar
  71. Shiyko, M. P., Lanza, S. T., Tan, X., Li, R., & Shiffman, S. (2012). Using the time-varying effect model (TVEM) to examine dynamic associations between negative affect and self confidence on smoking urges: Differences between successful quitters and relapsers. Prevention Science, 13, 288–299.  https://doi.org/10.1007/s11121-011-0264-z CrossRefPubMedPubMedCentralGoogle Scholar
  72. Silvia, P. J., Kwapil, T. R., Walsh, M. A., & Myin-Germeys, I. (2014). Planned missing data designs in experience sampling research: Monte Carlo simulations of efficient designs for assessing within-person constructs. Behavior Research Methods, 46, 41–54.  https://doi.org/10.3758/s13428-013-0353-y CrossRefPubMedPubMedCentralGoogle Scholar
  73. Starr, L. R., & Davila, J. (2012). Temporal patterns of anxious and depressed mood in generalized anxiety disorder: A daily diary study. Behaviour Research and Therapy, 50, 131–141.CrossRefPubMedGoogle Scholar
  74. Steger, M. F., & Frazier, P. (2005). Meaning in life: One link in the chain from religiousness to well-being. Journal of Counseling Psychology, 52, 574–582.  https://doi.org/10.1037/0022-0167.52.4.574 CrossRefGoogle Scholar
  75. Turchin, P., & Taylor, A. D. (1992). Complex dynamics in ecological time series. Ecology, 73, 289–305.  https://doi.org/10.2307/1938740 CrossRefGoogle Scholar
  76. Voelkle, M. C., & Oud, J. H. L. (2013). Continuous time modelling with individually varying time intervals for oscillating and non-oscillating processes. British Journal of Mathematical and Statistical Psychology, 66, 103–126.  https://doi.org/10.1111/j.2044-8317.2012.02043.x CrossRefPubMedGoogle Scholar
  77. Voelkle, M. C., Oud, J. H., Davidov, E., & Schmidt, P. (2012). An SEM approach to continuous time modeling of panel data: Relating authoritarianism and anomia. Psychological Methods, 17, 176–192.  https://doi.org/10.1037/a0027543 CrossRefPubMedGoogle Scholar
  78. Walls, T. A., & Schafer, J. L. (2006). Models for intensive longitudinal data. New York, NY: Oxford University Press.CrossRefGoogle Scholar
  79. Wei, W. W. S. (2006). Time series analysis: Univariate and multivariate methods (2nd ed.). Boston, MA: Pearson Education, Inc.Google Scholar
  80. Wetherell, J. (2013). Android heart rate monitor. Retrieved from https://code.google.com/p/android-heart-rate-monitor/
  81. Wood, S. N. (2003). Thin plate regression splines. Journal of the Royal Statistical Society: Series B, 65, 95–114.  https://doi.org/10.1111/1467-9868.00374 CrossRefGoogle Scholar
  82. Wood, S. N. (2006). Generalized additive models: An introduction with R. Boca Raton, FL: CRC Press.Google Scholar
  83. Zhang, G., & Browne, M. (2010). Dynamic factor analysis with ordinal variables. In S.-M. Chow, E. Ferrer, & F. Hsieh (Eds.), Statistical methods for modeling human dynamics: An interdisciplinary dialogue (Notre Dame Series on Quantitative Methodology), Vol. 4, pp. 241–263). New York, NY: Taylor & Francis.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Nicholas C. Jacobson
    • 1
  • Sy-Miin Chow
    • 1
  • Michelle G. Newman
    • 1
  1. 1.Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations