Russian Sentence Corpus: Benchmark measures of eye movements in reading in Russian

  • Anna K. LaurinavichyuteEmail author
  • Irina A. Sekerina
  • Svetlana Alexeeva
  • Kristine Bagdasaryan
  • Reinhold Kliegl


This article introduces a new corpus of eye movements in silent reading—the Russian Sentence Corpus (RSC). Russian uses the Cyrillic script, which has not yet been investigated in cross-linguistic eye movement research. As in every language studied so far, we confirmed the expected effects of low-level parameters, such as word length, frequency, and predictability, on the eye movements of skilled Russian readers. These findings allow us to add Slavic languages using Cyrillic script (exemplified by Russian) to the growing number of languages with different orthographies, ranging from the Roman-based European languages to logographic Asian ones, whose basic eye movement benchmarks conform to the universal comparative science of reading (Share, 2008). We additionally report basic descriptive corpus statistics and three exploratory investigations of the effects of Russian morphology on the basic eye movement measures, which illustrate the kinds of questions that researchers can answer using the RSC. The annotated corpus is freely available from its project page at the Open Science Framework:


Reading Eye movements Russian Ambiguity Part of speech Corpus 


  1. Ablinger, I., Huber, W., & Radach, R. (2014). Eye movement analyses indicate the underlying reading strategy in the recovery of lexical readers. Aphasiology, 28, 640–657.CrossRefGoogle Scholar
  2. Alexeeva, S., Slioussar, N., & Chernova, D. (2017). StimulStat: A lexical database for Russian. Behavior research methods, 1–11.Google Scholar
  3. Alexeeva S. V., & Slioussar, N. A. (2017). Effekt dliny pri parafoveal’noj obrabotke slov vo vrema chtenia [The effect of length in parafoveal processing of word in reading]. Tomsk State University Journal Filologia 45, 5–29.CrossRefGoogle Scholar
  4. Anisimov, V. N., Fedorova, O. V., & Latanov, A. V. (2014). Eye movement parameters in reading sentences with syntactic ambiguities in Russian. Human Physiology, 40, 521–531.CrossRefGoogle Scholar
  5. Ashby, J., Rayner, K., & Clifton, C. (2005). Eye movements of highly skilled and average readers: Differential effects of frequency and predictability. Quarterly Journal of Experimental Psychology, 58A, 1065–1086.CrossRefGoogle Scholar
  6. Baerman, M., Brown, D., & Corbett, G. G. (2005). The syntax–morphology interface: A study of syncretism. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  7. Bai, X., Yan, G., Liversedge, S. P., Zang, C., & Rayner, K. (2008). Reading spaced and unspaced Chinese text: Evidence from eye movements. Journal of Experimental Psychology: Human Perception and Performance, 34, 1277–1287. doi: PubMedPubMedCentralGoogle Scholar
  8. Bassano, D. (2000). Early development of nouns and verbs in French: Exploring the interface between lexicon and grammar. Journal of Child Language, 27, 521–559.CrossRefPubMedGoogle Scholar
  9. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1–48. doi: CrossRefGoogle Scholar
  10. Bezrukikh, M. M., & Ivanov, V. V. (2012). Eye movements during reading as an indicator of development of reading skill. Fiziologiia Cheloveka, 39, 83–93.Google Scholar
  11. Boston, M. F., Hale, J. T., Kliegl, R., Patil, U., & Vasishth, S. (2008). Parsing costs as predictors of reading difficulty: An evaluation using the Potsdam sentence corpus. Journal of Eye Movement Research, 2(1):1–12. doi: Google Scholar
  12. Chernova, D. A. (2015). Eye-tracking study of attachment ambiguity resolution in Russian. Voprosy Psikholingvistiki, 26, 256–267.Google Scholar
  13. Clifton, C., Jr., Staub, A., & Rayner, K. (2007). Eye movements in reading words and sentences. In R. P. G. van Gompel, M. H. Fischer, W. S. Murray, & R. L. Hill (Eds.), Eye movements: A window on mind and brain (pp. 341–369). Amsterdam, The Netherlands: Elsevier.CrossRefGoogle Scholar
  14. Cop, U., Dirix, N., Drieghe, D., & Duyck, W. (2017). Presenting GECO: An eyetracking corpus of monolingual and bilingual sentence reading. Behavior Research Methods, 49, 602–615.CrossRefPubMedGoogle Scholar
  15. Crawford, T. J., Devereaux, A., Higham, S., & Kelly, C. (2015). The disengagement of visual attention in Alzheimer’s disease: A longitudinal eye-tracking study. Frontiers in Aging Neuroscience, 7, 118.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Crepaldi, D., Berlingeri, M., Paulesu, E., & Luzzatti, C. (2011). A place for nouns and a place for verbs? A critical review of neurocognitive data on grammatical-class effects. Brain and Language, 116, 33–49. doi: CrossRefPubMedGoogle Scholar
  17. Dambacher, M., Dimigen, O., Braun, M., Wille, K., Jacobs, A. M., & Kliegl, R. (2012). Stimulus onset asynchrony and the time course of word recognition: Effects of frequency and predictability on event-related potentials. Neuropsychologia, 50, 1852–1870.CrossRefPubMedGoogle Scholar
  18. Dambacher, M., Rolfs, M., Göllner, K., Kliegl, R., & Jacobs, A. (2009). Event-related potentials reveal rapid verification of predicted visual input. PLoS ONE, 4, e5047:1–8. doi: Google Scholar
  19. Demberg, V., & Keller, F. (2008). Data from eye-tracking corpora as evidence for theories of syntactic processing complexity. Cognition, 109, 193–210.CrossRefPubMedGoogle Scholar
  20. Efremova, T. F. (2000). Novyj tolkovo-slovoobrazovatel’nyj slovar’ russkogo jazyka [The new Russian language dictionary]. Moscow, Russia: Russkij jazyk.Google Scholar
  21. Engbert, R., & Kliegl, R. (2001). Mathematical models of eye movements in reading: A possible role for autonomous saccades. Biological Cybernetics, 85, 77–87. CrossRefPubMedGoogle Scholar
  22. Engbert, R., Longtin, A., & Kliegl, R. (2002). A dynamical model of saccade generation in reading based on spatially distributed lexical processing. Vision Research, 42, 621–636. doi: CrossRefPubMedGoogle Scholar
  23. Engbert, R., Nuthmann, A., Richter, E. M., & Kliegl, R. (2005). SWIFT: A dynamical model of saccade generation during reading. Psychological Review, 112, 777–813. doi: CrossRefPubMedGoogle Scholar
  24. Fernández, G., Shalom, D. E., Kliegl, R., & Sigman, M. (2014). Eye movements during reading proverbs and regular sentences: The incoming word predictability effect. Language, Cognition and Neuroscience, 29, 260–273.CrossRefGoogle Scholar
  25. Genzel, D., & Charniak, E. (2002). Entropy rate constancy in text. In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics (pp. 199–206). Stroudsburg, PA: Association for Computational Linguistics.Google Scholar
  26. Gibson, E. (2000). The dependency locality theory: A distance-based theory of linguistic complexity. In A. Marantz, Y. Miyashita, & W. O’Neil (Eds.), Image, language , brain: Papers from the first mind articulation project symposium (pp. 94–126). Cambridge, MA: MIT Press.Google Scholar
  27. Hale, J. (2001). A probabilistic early parser as a psycholinguistic model. In Proceedings of the second meeting of the North American Chapter of the Association for Computational Linguistics on Language Technologies (pp. 1–8). Stroudsburg, PA: Association for Computational Linguistics.Google Scholar
  28. Heister, J., Würzner, K. M., & Kliegl, R. (2012). Analysing large datasets of eye movements during reading. In J. S. Adelman (Ed.), Visual word recognition. Vol. 2: Meaning and context, individuals and development (pp. 102–130). Hove, UK: Psychology Press.Google Scholar
  29. Hohenstein, S., & Kliegl, R. (2017). remef: Remove partial effects (R package version
  30. Huey, E. B. (1908). Basic studies on reading. New York, NY: Basic Books.Google Scholar
  31. Husain, S., Vasishth, S., & Srinivasan, N. (2015). Integration and prediction difficulty in Hindi sentence comprehension: Evidence from an eye-tracking corpus. Journal of Eye Movement Research, 8(2), 1–12. doi: Google Scholar
  32. Hyönä, J., Laine, M., & Niemi, J. (1995). Effects of a word’s morphological complexity on readers’ eye fixation patterns. In J. M. Findlay, R. Walker, & R. W. Kentridge (Eds.), Eye movement research: Mechanisms, processes and applications (pp. 445–452). Amsterdam, The Netherlands: Elsevier.CrossRefGoogle Scholar
  33. Hyönä, J., Yan, M., & Vainio, S. (2017). Morphological structure influences the initial landing position in words during reading Finnish. The Quarterly Journal of Experimental Psychology, 1–10.Google Scholar
  34. Jonkers, R., & Bastiaanse, R. (1996). The influence of instrumentality and transitivity on action naming in Broca’s and anomic aphasia. Brain and Language, 55, 37–39.Google Scholar
  35. Jouravlev, O., & Jared, D. (2018). Cross-script orthographic and phonological preview benefits. Quarterly Journal of Experimental Psychology, 71, 11–19. doi: CrossRefGoogle Scholar
  36. Keller, F. (2004). The entropy rate principle as a predictor of processing effort: An evaluation against eye-tracking data. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Barcelona 2004 (pp. 317–324). New York, NY: ACM Press.Google Scholar
  37. Kennedy, A., & Pynthe, J. (2005). Parafoveal-on-foveal effects in normal reading. Vision Research, 45, 153–168.CrossRefPubMedGoogle Scholar
  38. Kim, Y. S., Radach, R., & Vorstius, C. (2012). Eye movements and parafoveal processing during reading in Korean. Reading & Writing, 25, 1053–1078.CrossRefGoogle Scholar
  39. Kliegl, R., Grabner, E., Rolfs, M., & Engbert, R. (2004). Length, frequency, and predictability effects of words on eye movements in reading. European Journal of Cognitive Psychology, 16, 262–284. doi: CrossRefGoogle Scholar
  40. Kliegl, R., Nuthmann, A., & Engbert, R. (2006). Tracking the mind during reading: The influence of past, present, and future words on fixation durations. Journal of Experimental Psychology: General, 135, 12–35. doi: CrossRefGoogle Scholar
  41. Kuperman, V., Bertram, R., & Baayen, R. H. (2010). Processing trade-offs in the reading of Dutch derived words. Journal of Memory and Language, 62, 83–97.CrossRefGoogle Scholar
  42. Kuperman, V., Dambacher, M., Nuthmann, A., & Kliegl, R. (2010). The effect of word position on eye-movements in sentence and paragraph reading. Quarterly Journal of Experimental Psychology, 63, 1838–1857.CrossRefGoogle Scholar
  43. Kuperman, V., & Van Dyke, J. A. (2011). Effects of individual differences in verbal skills on eye-movement patterns during sentence reading. Journal of Memory and Language, 65, 42–73.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Laubrock, J., & Kliegl, R. (2015). The eye–voice span during reading aloud. Frontiers in Psychology, 6, 1432. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lewis, G. E. (1972). Multilingualism in the Soviet Union: Aspects of language policy and its implementation. The Hague, The Netherlands: Mouton De Gruyter.Google Scholar
  46. Li, X., Bicknell, K., Liu, P., Wei, W., & Rayner, K. (2014). Reading is fundamentally similar across disparate writing systems: A systematic characterization of how words and characters influence eye movements in Chinese reading. Journal of Experimental Psychology: General, 143, 895–913.CrossRefGoogle Scholar
  47. Liversedge, S. P., Drieghe, D., Li, X., Yan, G., Bai, X., Hyönä, J. (2016). Universality in eye movements and reading: A trilingual investigation. Cognition, 147, 1–20.CrossRefPubMedGoogle Scholar
  48. Lüdecke, D. (2017). sjPlot: Data visualization for statistics in social science (R package version 2.3.3). Retrieved from
  49. Lyashevskaya, O. N., & Sharov, S. A. (2009). Chastotnyj Slovar’ Sovremennogo Russkogo Jazyka (na Materialakh Natsional’nogo Korpusa Russkogo Jazyka) [Frequency Dictionary of Modern Russian (based on the materials of the Russian National Corpus)]. Moscow, Russia: Azbukovnik.Google Scholar
  50. Mätzig, S., Druks, J., Masterson, J., & Vigliocco, G. (2009). Noun and verb differences in picture naming: Past studies and new evidence. Cortex, 45, 738–758. doi: CrossRefPubMedGoogle Scholar
  51. Paterson, K. B., Almabruk, A. A., McGowan, V. A., White, S. J., & Jordan, T. R. (2015). Effects of word length on eye movement control: The evidence from Arabic. Psychonomic Bulletin & Review, 22, 1443–1450.CrossRefGoogle Scholar
  52. Paterson, K. B., McGowan, V. A., White, S. J., Malik, S., Abedipour, L., & Jordan, T. R. (2014). Reading direction and the central perceptual span in Urdu and English. PLoS ONE, 9, e88358. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  53. Pollatsek, A., Bolozky, S., Well, A. D., & Rayner, K. (1981). Asymmetries in the perceptual span for Israeli readers. Brain and Language, 14, 174–180.CrossRefPubMedGoogle Scholar
  54. R Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www. Google Scholar
  55. Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124, 372–422. doi: CrossRefPubMedGoogle Scholar
  56. Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual search. Quarterly Journal of Experimental Psychology, 62, 1457–1506. doi: CrossRefGoogle Scholar
  57. Rayner, K., Chace, K. H., Slattery, T. J., & Ashby, A. (2006). Eye movements as reflections of comprehension processes in reading. Scientific Studies of Reading, 10, 241–255. doi: CrossRefGoogle Scholar
  58. Rayner, K., Pollatsek, A., Drieghe, D., Slattery, T. J., & Reichle, E. D. (2007). Tracking the mind during reading via eye movements: Comments on Kliegl, Nuthmann, and Engbert (2006). Journal of Experimental Psychology: General, 136, 520–529. doi: CrossRefGoogle Scholar
  59. Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K. (1998). Toward a model of eye movement control in reading. Psychological Review, 105, 125–157. doi: CrossRefPubMedGoogle Scholar
  60. Risse, S., Hohenstein, S., Kliegl, R., & Engbert, R. (2014). A theoretical analysis of the perceptual span based on SWIFT simulations of the n+2 boundary paradigm. Visual Cognition, 22, 283–308. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sainio, M., Hyönä, J., Bingushi, K., & Bertram, R. (2007). The role of interword spacing in reading Japanese: An eye movement study. Vision Research, 47, 2575–2584.CrossRefPubMedGoogle Scholar
  62. Schad, D. J., & Engbert, R. (2012). The zoom lens of attention: Simulating shuffled versus normal text reading using the SWIFT model. Visual Cognition, 20, 391–421.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Schad, D. J., Nuthmann, A., & Engbert, R. (2012). Your mind wanders weakly, your mind wanders deeply: Objective measures reveal mindless reading at different levels. Cognition, 125, 179–194.CrossRefPubMedGoogle Scholar
  64. Schilling, H. E. H., Rayner, K., & Chumbley, J. I. (1998). Comparing naming, lexical decision, and eye fixation times: Word frequency effects and individual differences. Memory & Cognition, 26, 1270–1281. doi: CrossRefGoogle Scholar
  65. Share, D. (2008). On the Anglocentricities of current reading research and practice: The perils of overreliance on an “outlier” orthography. Psychological Bulletin, 134, 584–615.CrossRefPubMedGoogle Scholar
  66. Szekely, A., D’Amico, S., Devescovi, A., Federmeier, K., Herron, D., Iyer, G., … Bates, E. (2005). Timed action and object naming. Cortex, 41, 7–25. doi:
  67. Tiffin-Richards, S. P., & Schroeder, S. (2015). Word length and frequency effects on children’s eye movements during silent reading. Vision Research, 113, 33–43.CrossRefPubMedGoogle Scholar
  68. Tikhonov, A. N. (2003). Slovoobrasovatel’nyj slovar’ russkogo yazyka v dvux tomax [Word formation dictionary of Russian in two volumes]. Moscow, Russia: Astrel.Google Scholar
  69. Tinker, M. A. (1958). Recent studies of eye movements in reading. Psychological Bulletin, 55, 215–231. doi: CrossRefPubMedGoogle Scholar
  70. Tsai, J. L., Kliegl, R., & Yan, M. (2012). Parafoveal semantic information extraction in traditional Chinese reading. Acta Psychologica, 141, 17–23.CrossRefPubMedGoogle Scholar
  71. Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. New York, NY: Springer.CrossRefGoogle Scholar
  72. Winskel, H., Radach, R., & Luksaneeyanawin, S. (2009). Eye movements when reading spaced and unspaced Thai and English: A comparison of Thai–English bilinguals and English monolinguals. Journal of Memory and Language, 61, 339–351.CrossRefGoogle Scholar
  73. Yan, G., Tian, H., Bai, X., & Rayner, K. (2006). The effect of word and character frequency on the eye movements of Chinese readers. British Journal of Psychology, 97, 259–268.CrossRefPubMedGoogle Scholar
  74. Yan, M., Kliegl, R., Richer, E. M., Nuthmann, A., & Shu, H. (2010). Flexible saccade-target selection in Chinese reading. Quarterly Journal of Experimental Psychology, 63, 705–725.CrossRefGoogle Scholar
  75. Yan, M., Richter, E. M., Shu, H., & Kliegl, R. (2009). Readers of Chinese extract semantic information from parafoveal words. Psychonomic Bulletin & Review, 16, 561–566. doi: CrossRefGoogle Scholar
  76. Yan, M., Zhu, W., Shu, H., Yusupu, R., Miao, D., Krügel, A., & Kliegl, R. (2014). Eye movements guided by morphological structure: Evidence from the Uighur language. Cognition, 132, 181–215.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.National Research University Higher School of EconomicsMoscowRussian Federation
  2. 2.University of PotsdamPotsdamGermany
  3. 3.College of Staten Island and the Graduate Center of the City University of New YorkStaten IslandUSA
  4. 4.St.-Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations