Mouse tracking as a window into decision making

  • Mora MaldonadoEmail author
  • Ewan Dunbar
  • Emmanuel Chemla


Mouse tracking promises to be an efficient method to investigate the dynamics of cognitive processes: It is easier to deploy than eyetracking, yet in principle it is much more fine-grained than looking at response times. We investigated these claimed benefits directly, asking how the features of decision processes—notably, decision changes—might be captured in mouse movements. We ran two experiments, one in which we explicitly manipulated whether our stimuli triggered a flip in decision, and one in which we replicated more ecological, classical mouse-tracking results on linguistic negation (Dale & Duran, Cognitive Science, 35, 983–996, 2011). We concluded, first, that spatial information (mouse path) is more important than temporal information (speed and acceleration) for detecting decision changes, and we offer a comparison of the sensitivities of various typical measures used in analyses of mouse tracking (area under the trajectory curve, direction flips, etc.). We do so using an “optimal” analysis of our data (a linear discriminant analysis explicitly trained to classify trajectories) and see what type of data (position, speed, or acceleration) it capitalizes on. We also quantify how its results compare with those based on more standard measures.


Mouse tracking Decision making Negation processing LDA Sentence verification 



  1. Clark, H. H., & Chase, W. G. (1972). On the process of comparing sentences against pictures. Cognitive Psychology, 3, 472–517.CrossRefGoogle Scholar
  2. Cranford, E. A., & Moss, J. (2017). Mouse-tracking evidence for parallel anticipatory option evaluation. Cognitive Processing, 19, 327–350. CrossRefGoogle Scholar
  3. Dale, R., & Duran, N. D. (2011). The cognitive dynamics of negated sentence verification. Cognitive Science, 35, 983–996. CrossRefGoogle Scholar
  4. Donders, F. C. (1969). On the speed of mental processes. Acta Psychologica, 30, 412–431. (Original work published 1868) CrossRefGoogle Scholar
  5. Farmer, T. A., Cargill, S. A., Hindy, N. C., Dale, R., & Spivey, M. J. (2007). Tracking the continuity of language comprehension: Computer mouse trajectories suggest parallel syntactic processing. Cognitive Science, 31, 889–909. CrossRefGoogle Scholar
  6. Freeman, J. B. (2018). Doing psychological science by hand. Current Directions in Psychological Science, 27, 315–323. CrossRefGoogle Scholar
  7. Freeman, J. B., & Ambady, N. (2010). MouseTracker: software for studying real-time mental processing using a computer mouse-tracking method. Behavior Research Methods, 42, 226–241. CrossRefGoogle Scholar
  8. Freeman, J. B., Dale, R., & Farmer, T. A. (2011). Hand in motion reveals mind in motion. Frontiers in Psychology, 2, 59:1–6. Google Scholar
  9. Freeman, J. B., & Johnson, K. L. (2016). More than meets the eye: split-second social perception. Trends in Cognitive Sciences, 20, 362–374.CrossRefGoogle Scholar
  10. Freeman, J. B., Pauker, K., & Sanchez, D. T. (2016). A perceptual pathway to bias: Interracial exposure reduces abrupt shifts in real-time race perception that predict mixed-race bias. Psychological Science, 27, 502–517.CrossRefGoogle Scholar
  11. Hasson, U., & Glucksberg, S. (2006). Does understanding negation entail affirmation? An examination of negated metaphors Journal of Pragmatics, 38, 1015–1032.CrossRefGoogle Scholar
  12. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference and prediction (2nd). New York, NY: Springer.CrossRefGoogle Scholar
  13. Hehman, E., Stolier, R. M., & Freeman, J. B. (2014). Advanced mouse-tracking analytic techniques for enhancing psychological science. Group Processes & Intergroup Relations, 18, 384–401. CrossRefGoogle Scholar
  14. Kaup, B., Yaxley, R. H., Madden, C. J., Zwaan, R. A., & Lüdtke, J. (2007). Experiential simulations of negated text information. Quarterly Journal of Experimental Psychology, 60, 976–990.CrossRefGoogle Scholar
  15. Kieslich, P. J., & Henninger, F. (2017). Mousetrap: An integrated, open-source mouse-tracking package. Behavior Research Methods, 49, 1652–1667. CrossRefGoogle Scholar
  16. Koop, G. J. (2013). An assessment of the temporal dynamics of moral decisions. Judgment and Decision Making, 8, 527.Google Scholar
  17. Koop, G. J., & Johnson, J. G. (2013). The response dynamics of preferential choice. Cognitive Psychology, 67, 151–185.CrossRefGoogle Scholar
  18. Lüdtke, J., Friedrich, C. K., De Filippis, M., & Kaup, B. (2008). Event-related potential correlates of negation in a sentence–picture verification paradigm. Journal of Cognitive Neuroscience, 20, 1355–1370.
  19. McKinstry, C., Dale, R., & Spivey, M. J. (2008). Action dynamics reveal parallel competition in decision making. Psychological Science, 19, 22–24.CrossRefGoogle Scholar
  20. Nieuwland, M. S., & Kuperberg, G. R. (2008). When the truth is not too hard to handle: An event-related potential study on the pragmatics of negation. Psychological Science, 19, 1213–1218. CrossRefGoogle Scholar
  21. Orenes, I., Beltrán, D., & Santamaría, C. (2014). How negation is understood: Evidence from the visual world paradigm. Journal of Memory and Language, 74, 36–45.CrossRefGoogle Scholar
  22. Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20, 873–922. CrossRefGoogle Scholar
  23. Resulaj, A., Kiani, R., Wolpert, D. M., & Shadlen, M. N. (2009). Changes of mind in decision-making. Nature, 461, 263–266. CrossRefGoogle Scholar
  24. Sauerland, U., Tamura, A., Koizumi, M., & Tomlinson, J. M. (2017). Tracking down disjunction. In M. Otake, S. Kurahashi, Y. Ota, K. Satoh, & D. Bekki (Eds.), New Frontiers in Artificial Intelligence: JSAI-isAI 2015 Workshops (pp. 109–121). Cham: Springer.CrossRefGoogle Scholar
  25. Schulte-Mecklenbeck, M., Kühberger, A., & Johnson, J. (Eds.). (2019). A handbook of process tracing methods (2nd). New York: Psychology Press.Google Scholar
  26. Song, J. H., & Nakayama, K. (2009). Hidden cognitive states revealed in choice reaching tasks. Trends in Cognitive Sciences, 13, 360–366. CrossRefGoogle Scholar
  27. Song, J.-H., & Nakayama, K. (2006). Role of focal attention on latencies and trajectories of visually guided manual pointing. Journal of Vision, 6(9), 11. CrossRefGoogle Scholar
  28. Spivey, M. J., & Dale, R. (2006). Continuous dynamics in real-time cognition. Current Directions in Psychological Science, 15, 207–211. CrossRefGoogle Scholar
  29. Spivey, M. J., Dale, R., Knoblich, G., & Grosjean, M. (2010). Do curved reaching movements emerge from competing perceptions? A reply to van der Wel et al. (2009). Journal of Experimental Psychology: Human Perception and Performance, 36, 251–254. Google Scholar
  30. Spivey, M. J., Grosjean, M., & Knoblich, G. (2005). Continuous attraction toward phonological competitors. Proceedings of the National Academy of Sciences, 102, 10393–10398. CrossRefGoogle Scholar
  31. Tian, Y., & Breheny, R. (2016). Dynamic pragmatic view of negation processing. In P. Larrivée & C. Lee (Eds.), Negation and polarity: Experimental perspectives (pp. 21–43). Cham: Springer. CrossRefGoogle Scholar
  32. Tian, Y., Breheny, R., & Ferguson, H. J. (2010). Why we simulate negated information: A dynamic pragmatic account. Quarterly Journal of Experimental Psychology, 63, 2305–2312.CrossRefGoogle Scholar
  33. Tomlinson, J. M., Bailey, T. M., & Bott, L. (2013). Possibly all of that and then some: Scalar implicatures are understood in two steps. Journal of Memory and Language, 69, 18–35.CrossRefGoogle Scholar
  34. Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: The leaky, competing accumulator model. Psychological Review, 108, 550–592. CrossRefGoogle Scholar
  35. Wason, P. C. (1965). The contexts of plausible denial. Journal of Verbal Learning and Verbal Behavior, 4, 7–11. CrossRefGoogle Scholar
  36. Wason, P. C., & Johnson-Laird, P. N. (1972). Psychology of reasoning: Structure and content. Cambridge: Harvard University Press.Google Scholar
  37. Wojnowicz, M., Ferguson, M. J., Spivey, M., Wojnowicz, M. T., Ferguson, M. J., Dale, R., & Spivey, M. J. (2009). The self-organization of explicit attitudes. Psychological Science, 20, 1428–1435. CrossRefGoogle Scholar
  38. Wulff, D. U., Haslbeck, J. M. B., Kieslich, P. J., Henninger, F., Schulte-Mecklenbeck, M. (to appear). Mousetracking: Detecting types in movement trajectories. In M. Schulte-Mecklenbeck, A. Kuehberger, & J. G. Johnson (Ed.), A handbook of process tracing methods (2. ed.). Psychology PressGoogle Scholar
  39. Xiao, K., & Yamauchi, T. (2014). Semantic priming revealed by mouse movement trajectories. Consciousness and Cognition, 27, 42–52.CrossRefGoogle Scholar
  40. Xiao, K., & Yamauchi, T. (2017). The role of attention in subliminal semantic processing: A mouse tracking study. PLoS ONE, 12, e0178740. CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Center for Language Evolution, PPLSUniversity of EdinburghEdinburghUnited Kingdom
  2. 2.Laboratoire de Linguistique FormelleUniversité Paris Diderot, Sorbonne Paris Cité, CNRSParisFrance
  3. 3.Laboratoire de Sciences Cognitives et PsycholinguistiquePSL Research University, CNRS, EHESS École Normale SupérieureParisFrance

Personalised recommendations