Behavior Research Methods

, Volume 50, Issue 1, pp 26–38 | Cite as

Ultrahigh temporal resolution of visual presentation using gaming monitors and G-Sync

  • Christian H. Poth
  • Rebecca M. Foerster
  • Christian Behler
  • Ulrich Schwanecke
  • Werner X. Schneider
  • Mario Botsch


Vision unfolds as an intricate pattern of information processing over time. Studying vision and visual cognition therefore requires precise manipulations of the timing of visual stimulus presentation. Although standard computer display technologies offer great accuracy and precision of visual presentation, their temporal resolution is limited. This limitation stems from the fact that the presentation of rendered stimuli has to wait until the next refresh of the computer screen. We present a novel method for presenting visual stimuli with ultrahigh temporal resolution (<1 ms) on newly available gaming monitors. The method capitalizes on the G-Sync technology, which allows for presenting stimuli as soon as they have been rendered by the computer’s graphics card, without having to wait for the next screen refresh. We provide software implementations in the three programming languages C++, Python (using PsychoPy2), and Matlab (using Psychtoolbox3). For all implementations, we confirmed the ultrahigh temporal resolution of visual presentation with external measurements by using a photodiode. Moreover, a psychophysical experiment revealed that the ultrahigh temporal resolution impacts on human visual performance. Specifically, observers’ object recognition performance improved over fine-grained increases of object presentation duration in a theoretically predicted way. Taken together, the present study shows that the G-Sync-based presentation method enables researchers to investigate visual processes whose data patterns were concealed by the low temporal resolution of previous technologies. Therefore, this new presentation method may be a valuable tool for experimental psychologists and neuroscientists studying vision and its temporal characteristics.


Display Screen CRT replacement Vision Visual cognition Psychophysics 


Author Note

This research was supported by the Cluster of Excellence Cognitive Interaction Technology “CITEC” (EXC 277) at Bielefeld University, which is funded by the German Research Foundation (DFG). We thank Anders Petersen for very helpful discussions, and Signe Vangkilde for making available visual pattern masks. C.H.P., R.M.F., C.B., W.X.S., and M.B. designed the research. C.B. and M.B. developed the C++ computer programs. C.H.P. developed the Python and Matlab computer programs. U.S. designed the photodiode circuit for the monitor measurements. C.H.P. performed the monitor measurements and analyzed the data. C.B. programmed the psychophysical experiment. R.M.F. collected the data of the psychophysical experiment, and C.H.P. analyzed these data. C.H.P. and M.B. wrote the manuscript. C.H.P., R.M.F., U.S., W.X.S., and M.B. read and commented on the manuscript.

Supplementary material (4 kb)
ESM 1 (PY 3 kb)
13428_2017_1003_MOESM2_ESM.m (3 kb)
ESM 2 (M 2 kb) (1.1 mb)
ESM 3 (ZIP 1159 kb)


  1. Averbach, E., & Coriell, A. S. (1961). Short-term memory in vision. Bell System Technical Journal, 40, 309–328. CrossRefGoogle Scholar
  2. Bauer, B. (2015). A timely reminder about stimulus display times and other presentation parameters on CRTs and newer technologies. Canadian Journal of Experimental Psychology, 69, 264–273. CrossRefPubMedGoogle Scholar
  3. Benschop, R. (1998). What is a tachistoscope? Historical explorations of an instrument. Science in Context, 11, 23–50. CrossRefPubMedGoogle Scholar
  4. Breitmeyer, B., & Öğmen, H. (2006). Visual masking: Time slices through conscious and unconscious vision. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
  5. Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97, 523–547. CrossRefPubMedGoogle Scholar
  6. Bundesen, C., & Harms, L. (1999). Single-letter recognition as a function of exposure duration. Psychological Research, 62, 275–279. CrossRefGoogle Scholar
  7. Bundesen, C., Vangkilde, S., & Petersen, A. (2015). Recent developments in a computational theory of visual attention (TVA). Vision Research, 116(Pt. B), 210–218. CrossRefPubMedGoogle Scholar
  8. Cattell, J. M. (1885). Ueber die Zeit der Erkennung und Benennung von Schriftzeichen, Bildern und Farben. Philosophische Studien, 2, 635–650.Google Scholar
  9. Cattell, J. M. (1886). The time taken up by cerebral operations. Mind, 42, 220–242.CrossRefGoogle Scholar
  10. Davis, J., Hsieh, Y.-H., & Lee, H.-C. (2015). Humans perceive flicker artifacts at 500 Hz. Scientific Reports, 5, 7861. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dyrholm, M., Kyllingsbæk, S., Espeseth, T., & Bundesen, C. (2011). Generalizing parametric models by introducing trial-by-trial parameter variability: The case of TVA. Journal of Mathematical Psychology, 55, 416–429. CrossRefGoogle Scholar
  12. Elze, T., & Tanner, T. G. (2012). Temporal properties of liquid crystal displays: Implications for vision science experiments. PLoS ONE, 7, e44048. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Enns, J. T., & Di Lollo, V. (2000). What’s new in visual masking? Trends in Cognitive Sciences, 4, 345–352. CrossRefPubMedGoogle Scholar
  14. Foerster, R. M., Poth, C. H., Behler, C., Botsch, M., & Schneider, W. X. (2016). Using the virtual reality device Oculus Rift for neuropsychological assessment of visual processing capabilities. Scientific Reports, 6, 37016. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ghodrati, M., Morris, A. P., & Price, N. S. C. (2015). The (un)suitability of modern liquid crystal displays (LCDs) for vision research. Frontiers in Psychology, 6, 303. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Habekost, T. (2015). Clinical TVA-based studies: A general review. Frontiers in Psychology, 6, 290. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What’s new in Psychtoolbox-3. Perception, 36, 1.Google Scholar
  18. Krolak-Salmon, P., Hénaff, M.-A., Tallon-Baudry, C., Yvert, B., Guénot, M., Vighetto, A., ... Bertrand, O. (2003). Human lateral geniculate nucleus and visual cortex respond to screen flicker. Annals of Neurology, 53, 73–80. CrossRefPubMedGoogle Scholar
  19. Lagroix, H. E. P., Yanko, M. R., & Spalek, T. M. (2012). LCDs are better: Psychophysical and photometric estimates of the temporal characteristics of CRT and LCD monitors. Attention, Perception, & Psychophysics, 74, 1033–1041. CrossRefGoogle Scholar
  20. Nobre, K., & Kastner, S. (Eds.). (2014). The Oxford handbook of attention. Oxford, UK: Oxford University Press.Google Scholar
  21. Petersen, A., & Andersen, T. S. (2012). The effect of exposure duration on visual character identification in single, whole, and partial report. Journal of Experimental Psychology: Human Perception and Performance, 38, 498–514. PubMedGoogle Scholar
  22. Petersen, A., Kyllingsbæk, S., & Bundesen, C. (2012). Measuring and modeling attentional dwell time. Psychonomic Bulletin & Review, 19, 1029–1046. CrossRefGoogle Scholar
  23. Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python. Journal of Neuroscience Methods, 162: 8–13. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Peirce, J. W. (2009) Generating stimuli for neuroscience using PsychoPy. Frontiers in Neuroinformatics, 2, 10. PubMedPubMedCentralGoogle Scholar
  25. Poth, C. H., Herwig, A., & Schneider, W. X. (2015). Breaking object correspondence across saccadic eye movements deteriorates object recognition. Frontiers in Systems Neuroscience, 9, 176. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Poth, C. H., Petersen, A., Bundesen, C., & Schneider, W. X. (2014). Effects of monitoring for visual events on distinct components of attention. Frontiers in Psychology, 5, 930. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Poth, C. H., & Schneider, W. X. (2016a). Breaking object correspondence across saccades impairs object recognition: The role of color and luminance. Journal of Vision, 16(11), 1. CrossRefPubMedGoogle Scholar
  28. Poth, C. H., & Schneider, W. X. (2016b). Episodic short-term recognition requires encoding into visual working memory: Evidence from probe recognition after letter report. Frontiers in Psychology, 7, 1440. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Poth, C. H., & Horstmann, G. (2017). Assessing the monitor warm-up time required before a psychological experiment can begin. Quantitative Methods for Psychology, 13: 166–173. CrossRefGoogle Scholar
  30. R Development Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https/ Scholar
  31. Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18, 849–860. PubMedGoogle Scholar
  32. Schneider, W. X. (2013). Selective visual processing across competition episodes: A theory of task-driven visual attention and working memory. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 20130060. CrossRefGoogle Scholar
  33. Semmelmann, K., & Weigelt, S. (2016). Online psychophysics: Reaction time effects in cognitive experiments. Behavior Research Methods.
  34. Shibuya, H., & Bundesen, C. (1988). Visual selection from multielement displays: Measuring and modeling effects of exposure duration. Journal of Experimental Psychology: Human Perception and Performance, 14, 591–600. PubMedGoogle Scholar
  35. Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs: General and Applied, 74, 1–29. CrossRefGoogle Scholar
  36. Vangkilde, S., Bundesen, C., & Coull, J. T. (2011). Prompt but inefficient: Nicotine differentially modulates discrete components of attention. Psychopharmacology, 218, 667–680. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Vangkilde, S., Coull, J. T., & Bundesen, C. (2012). Great expectations: Temporal expectation modulates perceptual processing speed. Journal of Experimental Psychology: Human Perception and Performance, 38, 1183–1191. PubMedGoogle Scholar
  38. Vangkilde, S., Petersen, A., & Bundesen, C. (2013). Temporal expectancy in the context of a theory of visual attention. Philosophical Transactions of the Royal Society B, 368, 20130054. CrossRefGoogle Scholar
  39. Volkmann, A. W. (1859). Das Tachistoscop, ein Instrument, welches bei Untersuchung des momentanen Sehens den Gebrauch des elektrischen Funkens ersetzt. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physische Classe, 11, 90–98.Google Scholar
  40. Williams, P. E., Mechler, F., Gordon, J., Shapley, R., & Hawken, M. J. (2004). Entrainment to video displays in primary visual cortex of macaque and humans. Journal of Neuroscience, 24, 8278–8288. CrossRefPubMedGoogle Scholar
  41. Wollman, D. E., & Palmer, L. A. (1995). Phase locking of neuronal responses to the vertical refresh of computer display monitors in cat lateral geniculate nucleus and striate cortex. Journal of Neuroscience Methods, 60, 107–113. CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Christian H. Poth
    • 1
  • Rebecca M. Foerster
    • 1
  • Christian Behler
    • 2
  • Ulrich Schwanecke
    • 3
  • Werner X. Schneider
    • 1
  • Mario Botsch
    • 2
  1. 1.Department of Psychology and Cluster of Excellence Cognitive Interaction TechnologyBielefeld UniversityBielefeldGermany
  2. 2.Graphics & Geometry Group and Cluster of Excellence Cognitive Interaction TechnologyBielefeld UniversityBielefeldGermany
  3. 3.Computer Vision & Mixed Reality GroupRhein-Main University of Applied SciencesWiesbadenGermany

Personalised recommendations