Observation oriented modeling revised from a statistical point of view

Article

Abstract

Observation Oriented Modeling was proposed to overcome some of the problems in the application of statistical inference methods in the behavioral sciences. In this paper, we refine one part of this approach and show how it is connected to methods that are well known in statistical learning. Specifically, we argue that the Moore-Penrose pseudo inverse is superior to the initial solution from a statistical point of view. With this we also show that Observation Oriented Modeling can indeed be appropriate for some tasks in the analysis of observed data. To provide a practical example, we demonstrate the revised method by analyzing the effect of mindfulness training on attentional processes.

Keywords

Statistical inference Statistical modeling Observation oriented modeling Mindfulness 

Supplementary material

13428_2017_949_MOESM1_ESM.pdf (70 kb)
(PDF 70.1 KB)
13428_2017_949_MOESM2_ESM.pdf (260 kb)
(PDF 259 KB)
13428_2017_949_MOESM3_ESM.pdf (142 kb)
(PDF 141 KB)
13428_2017_949_MOESM4_ESM.pdf (209 kb)
(PDF 209 KB)

References

  1. Agresti, A. (2003). Categorical data analysis, 2nd Edn. Hoboken, NJ: John Wiley & Sons, Inc.Google Scholar
  2. Analytics, R. (2015). Checkpoint: Install packages from snapshots on the checkpoint server for reproducibility. Retrieved from https://CRAN.R-project.org/package=checkpoint.
  3. Aronson, E., Wilson, T.D., & Sommers, S.R. (2015). Social psychology. New York City: Pearson.Google Scholar
  4. Atmanspacher, H., Filk, T., & Römer, H. (2004). Quantum Zeno features of bistable perception. Biological Cybernetics, 90(1), 33–40. https://doi.org/10.1007/s00422-003-0436-4.CrossRefPubMedGoogle Scholar
  5. Auguie, B. (2015). GridExtra: Miscellaneous functions for grid graphics. Retrieved from https://CRAN.R-project.org/package=gridExtra.
  6. Aust, F., & Barth, M. (2016). Papaja: Create apa manuscripts with rmarkdown. Retrieved from https://github.com/crsh/papaja.
  7. Ben-Israel, A., & Greville, T.N. (2003). Generalized inverses: Theory and applications (Second.) New York: Springer.Google Scholar
  8. Carter, O.L., Presti, D.E., Callistemon, C., Ungerer, Y., Liu, G.B., & Pettigrew, J.D. (2005). Meditation alters perceptual rivalry in Tibetan Buddhist monks. Current Biology, 15(11), R412–R413.CrossRefPubMedGoogle Scholar
  9. Chiesa, A., & Serretti, A. (2014). Are mindfulness-based interventions effective for substance use disorders? a systematic review of the evidence. Substance Use & Misuse, 49(5), 492–512. https://doi.org/10.3109/10826084.2013.770027.CrossRefGoogle Scholar
  10. Cohen, J. (1990). Things I have learned (so far). American Psychologist, 45(12), 1304–1312. Retrieved from http://psycnet.apa.org/psycinfo/1991-11596-001.CrossRefGoogle Scholar
  11. Cohen, L. (1959). Rate of apparent change of a necker cube as a function of prior stimulation. The American Journal of Psychology, 72(3), 327–344. https://doi.org/10.2307/1420037.CrossRefGoogle Scholar
  12. Craig, D.P.A., Varnon, C.A., Sokolowski, M.B.C., Wells, H., & Abramson, C.I. (2014). An assessment of fixed interval timing in free-flying honey bees: An analysis of individual performance. PLoS ONE, 9, e101262. Retrieved from https://doi.org/10.1371%2Fjournal.pone.0101262.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dahl, D.B. (2014). Xtable: Export tables to latex or html. Retrieved from https://CRAN.R-project.org/package=xtable.
  14. Dawid, A.P. (1976). Properties of diagnostic data distributions. Biometrics, 32(3), 647–658.CrossRefPubMedGoogle Scholar
  15. Dinges, C.W., Avalos, A., Abramson, C.I., Craig, D.P.A., Austin, Z.M., Varnon, C.A., & Wells, H. (2013). Aversive conditioning in honey bees (apis mellifera anatolica): A comparison of drones and workers. Journal of Experimental Biology, 216(21), 4124–4134. https://doi.org/10.1242/jeb.090100.CrossRefPubMedGoogle Scholar
  16. Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretization of continuous features. In Machine learning: Proceedings of the twelfth international conference, (Vol. 12 pp. 194–202).Google Scholar
  17. Edgington, E., & Onghena, P. (2007). Randomization tests. Boca Raton, FL: CRC Press.Google Scholar
  18. Edwards, W., Lindman, H., & Savage, L.J. (1963). Bayesian statistical inference for psychological research. Psychological Review, 70(3), 193–242. https://doi.org/10.1037/h0044139.CrossRefGoogle Scholar
  19. Efron, B., & Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross-validation. The American Statistician, 37(1), 36–48.Google Scholar
  20. Fisher, R.A. (1935). The design of experiments. Oliver & Boyd: Edinburgh.Google Scholar
  21. Fox, J., & Weisberg, S. (2015). Car: Companion to applied regression. Retrieved from https://CRAN.R-project.org/package=car.
  22. Freedman, D., & Diaconis, P. (1981). On the histogram as a density estimator: L2 theory. Zeitschrift Fü,r Wahrscheinlichkeitstheorie Und Verwandte Gebiete, 57(4), 453–476. https://doi.org/10.1007/BF01025868.CrossRefGoogle Scholar
  23. Gard, T., Hölzel, B., & Lazar, S.W. (2014). The potential effects of meditation on age-related cognitive decline: a systematic review. Annals of the New York Academy of Sciences, 1307, 89–103. https://doi.org/10.1111/nyas.12348.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gigerenzer, G. (2004). Mindless statistics. The Journal of Socio-Economics, 33(5), 587–606. https://doi.org/10.1016/j.socec.2004.09.033.CrossRefGoogle Scholar
  25. Godfrey, K.M., Gallo, L.C., & Afari, N. (2014). Mindfulness-based interventions for binge eating: a systematic review and meta-analysis. Journal of Behavioral Medicine, 38(2), 348–362. https://doi.org/10.1007/s10865-014-9610-5.CrossRefPubMedGoogle Scholar
  26. Grice, J.W. (2011). Observation oriented modeling: Analysis of cause in the behavioral sciences. Cambridge, MA: Academic Press.Google Scholar
  27. Grice, J.W. (2015). From means and variances to persons and patterns. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01007.
  28. Grice, J.W. (2017). Observation Oriented Modeling (OOM) Software. Amsterdam, NL: Elsevier. Retrieved from http://www.idiogrid.com/OOM/.Google Scholar
  29. Grice, J.W., Barrett, P.T., Schlimgen, L.A., & Abramson, C.I. (2012). Toward a brighter future for psychology as an observation oriented science. Behavioral Sciences, 2(1), 1–22.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Grice, J.W., Cohn, A., Ramsey, R.R., & Chaney, J.M. (2015a). On muddled reasoning and mediation modeling. Basic and Applied Social Psychology, 37(4), 214–225. https://doi.org/10.1080/01973533.2015.1049350.CrossRefGoogle Scholar
  31. Grice, J.W., Craig, D.P.A., & Abramson, C.I. (2015b). A simple and transparent alternative to repeated measures anova. SAGE Open, 5(3). https://doi.org/10.1177/2158244015604192.
  32. Grice, J.W., Yepez, M., Wilson, N.L., & Shoda, Y. (2016). Observation-oriented modeling going beyond; is it all a matter of chance?. Educational and Psychological Measurement, 0013164416667985.Google Scholar
  33. Gu, J., Strauss, C., Bond, R., & Cavanagh, K. (2015). How do Mindfulness-Based Cognitive Therapy and Mindfulness-Based Stress Reduction Improve Mental Health and Wellbeing? A Systematic Review and Meta-Analysis of Mediation Studies. Clinical Psychology Review, 37, 1–12. https://doi.org/10.1016/j.cpr.2015.01.006.CrossRefPubMedGoogle Scholar
  34. Halsey, L.G., Curran-Everett, D., Vowler, S.L., & Drummond, G.B. (2015). The fickle P value generates irreproducible results. Nature Methods, 12(3), 179–185. https://doi.org/10.1038/nmeth.3288.CrossRefPubMedGoogle Scholar
  35. Hastie, T.J., Tibshirani, R.J., & Friedman, J.H. (2009). The elements of statistical learning: Data mining, inference and prediction, 2nd Edn. New York: Springer.CrossRefGoogle Scholar
  36. Hofmann, S.G., Sawyer, A.T., Witt, A.A., & Oh, D. (2010). The effect of Mindfulness-Based therapy on anxiety and depression: a Meta-Analytic review. Journal of Consulting and Clinical Psychology, 78(2), 169–183.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hölzel, B., Carmody, J., Vangel, M., Congleton, C., Yerramsetti, S.M., Gard, T., & Lazar, S.W. (2011). Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Research: Neuroimaging, 191(1), 36–43.CrossRefPubMedGoogle Scholar
  38. Hubbard, R., & Lindsay, R.M. (2008). Why p values are not a useful measure of evidence in statistical significance testing. Theory & Psychology, 18(1), 69–88. https://doi.org/10.1177/0959354307086923.CrossRefGoogle Scholar
  39. Kabat-Zinn, J. (2003). Mindfulness-Based Interventions in context: past, Present, and Future. Clinical Psychology: Science & Practice, 10(2), 144–156.Google Scholar
  40. Keng, S.-L.L., Smoski, M.J., & Robins, C.J. (2011). Effects of mindfulness on psychological health: a review of empirical studies. Clinical Psychology Review, 31(6), 1041–1056. https://doi.org/10.1016/j.cpr.2011.04.006.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Labatut, V., & Cherifi, H. (2012). Accuracy measures for the comparison of classifiers. CoRR, abs/1207.3790. Retrieved from arXiv:1207.3790.
  42. Lambdin, C. (2012). Significance tests as sorcery: Science is empirical–significance tests are not. Theory & Psychology, 22(1), 67–90. https://doi.org/10.1177/0959354311429854.CrossRefGoogle Scholar
  43. Latané, B., & Nida, S. (1981). Ten years of research on group size and helping. Psychological Bulletin, 89 (2), 308–324.CrossRefGoogle Scholar
  44. Levine, M., Cassidy, C., Brazier, G., & Reicher, S. (2002). Self-categorization and Bystander Non-intervention: Two Experimental Studies1. Journal of Applied Social Psychology, 32 (7), 1452–1463. https://doi.org/10.1111/j.1559-1816.2002.tb01446.x.CrossRefGoogle Scholar
  45. Meehl, P.E. (1978). Theoretical risks and tabular asterisks: Sir Karl, Sir Ronald, and the slow progress of soft psychology. Journal of Consulting and Clinical Psychology, 46(4), 806.CrossRefGoogle Scholar
  46. Michell, J. (1997). Quantitative science and the definition of measurement in psychology. British Journal of Psychology, 88(3), 355–383. https://doi.org/10.1111/j.2044-8295.1997.tb02641.x.CrossRefGoogle Scholar
  47. Michell, J. (2000). Normal science, pathological science and psychometrics. Theory & Psychology, 10(5), 639–667.CrossRefGoogle Scholar
  48. Neyman, J., & Pearson, E.S. (1966). Joint statistical papers. Berkeley: Univ of California Press.Google Scholar
  49. Pearl, J. (2009). Causality. Cambridge: Cambridge university press.CrossRefGoogle Scholar
  50. Pearson, E.S. (1939). Student as statistician. Biometrika, 30(3/4), 210–250. Retrieved from http://www.jstor.org/stable/2332648.CrossRefGoogle Scholar
  51. Piet, J., & Hougaard, E. (2011). The effect of mindfulness-based cognitive therapy for prevention of relapse in recurrent major depressive disorder: a systematic review and meta-analysis. Clinical Psychology Review, 31(6), 1032–40. https://doi.org/10.1016/j.cpr.2011.05.002.CrossRefPubMedGoogle Scholar
  52. R Core Team (2015). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.r-project.org/.
  53. Sauer, S., & Luebke, K. (2017a). Data for paper? Observation oriented modeling revised from a statistical point of view? Open Science Framework. https://doi.org/10.17605/OSF.IO/SGZYD.
  54. Sauer, S., & Luebke, K. (2017b). R-code for paper? Observation oriented modeling revised from a statistical point of view? Open Science Framework. https://doi.org/10.17605/OSF.IO/U3NQ9.
  55. Sauer, S., Lemke, J., Wittmann, M., Kohls, N., Mochty, U., & Walach, H. (2012). How long is now for mindfulness meditators? Personality and Individual Differences, 52(6), 750–754. https://doi.org/10.1016/j.paid.2011.12.026.CrossRefGoogle Scholar
  56. Sauer, S., Walach, H., Schmidt, S., Hinterberger, T., Lynch, S., Büssing, A., & Kohls, N. (2013). Assessment of mindfulness: Review on state of the art. Mindfulness, 4(1), 1–15. https://doi.org/10.1007/s12671-012-0122-5.CrossRefGoogle Scholar
  57. Simpson, E.H. (1951). The interpretation of interaction in contingency tables. Journal of the Royal Statistical Society. Series B (Methodological), 13(2), 238–241.Google Scholar
  58. Slagter, H.A., Lutz, A., Greischar, L.L., Francis, A.D., Nieuwenhuis, S., Davis, J.M., & Davidson, R.J. (2007). Mental training affects distribution of limited brain resources. PLoS Biology, 5(6), 1–8. https://doi.org/10.1371/journal.pbio.0050138.CrossRefGoogle Scholar
  59. Stemmler, M. (2014). Person-centered methods. Springer International Publishing. https://doi.org/10.1007/978-3-319-05536-7.
  60. Stevens, S.S., Volkmann, J., & Newman, E. (1937). A scale for the measurement of the psychological magnitude pitch. Journal of the Acoustical Society of America (JASA), 8(3), 185–190. https://doi.org/10.1121/1.1915893.CrossRefGoogle Scholar
  61. Sturges, H.A. (1926). The Choice of a Class Interval. Journal of the American Statistical Association, 21(153), 65–66. Retrieved from http://www.jstor.org/stable/2965501.CrossRefGoogle Scholar
  62. Szepannek, G., Luebke, K., & Weihs, C. (2005). Understanding patterns with different subspace classification. In Machine learning and data mining in pattern recognition (pp. 110–119). New York City: Springer.Google Scholar
  63. Thompson, B. (1999). If Statistical Significance Tests are Broken/Misused, What Practices Should Supplement or Replace Them? Theory & Psychology, 9 (2), 165–181. https://doi.org/10.1177/095935439992006.CrossRefGoogle Scholar
  64. Thorngate, W., & Ma, C. (2016). Wiggles and curves: The analysis of ordinal patterns (analiza struktur porzadkowych). Problemy Zarzadzania, 14(60), 160–172. https://doi.org/10.7172/1644-9584.60.10.Google Scholar
  65. Valentine, K.D., & Buchanan, E.M. (2013). JAM-Boree: An application of observation oriented modelling to judgements of associative memory. Journal of Cognitive Psychology, 25(4), 400–422. https://doi.org/10.1080/20445911.2013.775120.CrossRefGoogle Scholar
  66. Venables, W.N., & Ripley, B.D. (2013). Modern Applied Statistics with S-PLUS. New York City: Springer. Retrieved from https://books.google.de/books?id=tovgBwAAQBAJ.
  67. Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14(5), 779–804.CrossRefGoogle Scholar
  68. Wassenhove, V., van Wittmann, M., Craig, D.P.A., & Paulus, M.P. (2011). Psychological and neural mechanisms of subjective time dilation. Frontiers in Neuroscience, 5.Google Scholar
  69. Wasserstein, R.L., & Lazar, N.A. (2016). The asa’s statement on p-values: context, process, and purpose. The American Statistician, 70(2), 129–133. https://doi.org/10.1080/00031305.2016.1154108.CrossRefGoogle Scholar
  70. Wickham, H. (2015). Tidyr: Easily tidy data with ‘spread()‘ and ‘gather()‘ functions. Retrieved from https://CRAN.R-project.org/package=tidyr.
  71. Wickham, H., & Chang, W. (2015). Ggplot2: An implementation of the grammar of graphics. Retrieved from https://CRAN.R-project.org/package=ggplot2.
  72. Wickham, H., & Francois, R. (2015). Dplyr: A grammar of data manipulation. Retrieved from https://CRAN.R-project.org/package=dplyr.
  73. Williams, J.M.G., Teasdale, J.D., Segal, Z.V., & Soulsby, J. (2000). Mindfulness-Based Cognitive therapy reduces overgeneral autobiographical memory in formerly depressed patients. Journal of Abnormal Psychology, 109 (1), 150– 155.CrossRefPubMedGoogle Scholar
  74. Ziliak, S.T., & McCloskey, D.N. (2008). The cult of statistical significance: How the standard error costs us jobs, justice and lives. Ann Arbor, MI: University of Michigan Press.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  1. 1.Iwp InstituteFOM University of Applied SciencesNürnbergGermany

Personalised recommendations