Imageability ratings across languages

  • Adrià Rofes
  • Lilla Zakariás
  • Klaudia Ceder
  • Marianne Lind
  • Monica Blom Johansson
  • Vânia de Aguiar
  • Jovana Bjekić
  • Valantis Fyndanis
  • Anna Gavarró
  • Hanne Gram Simonsen
  • Carlos Hernández Sacristán
  • Maria Kambanaros
  • Jelena Kuvač Kraljević
  • Silvia Martínez-Ferreiro
  • İlknur Mavis
  • Carolina Méndez Orellana
  • Ingrid Sör
  • Ágnes Lukács
  • Müge Tunçer
  • Jasmina Vuksanović
  • Amaia Munarriz Ibarrola
  • Marie Pourquie
  • Spyridoula Varlokosta
  • David Howard
Article
  • 223 Downloads

Abstract

Imageability is a psycholinguistic variable that indicates how well a word gives rise to a mental image or sensory experience. Imageability ratings are used extensively in psycholinguistic, neuropsychological, and aphasiological studies. However, little formal knowledge exists about whether and how these ratings are associated between and within languages. Fifteen imageability databases were cross-correlated using nonparametric statistics. Some of these corresponded to unpublished data collected within a European research network—the Collaboration of Aphasia Trialists (COST IS1208). All but four of the correlations were significant. The average strength of the correlations (rho = .68) and the variance explained (R2 = 46%) were moderate. This implies that factors other than imageability may explain 54% of the results. Imageability ratings often correlate across languages. Different possibly interacting factors may explain the moderate strength and variance explained in the correlations: (1) linguistic and cultural factors; (2) intrinsic differences between the databases; (3) range effects; (4) small numbers of words in each database, equivalent words, and participants; and (5) mean age of the participants. The results suggest that imageability ratings may be used cross-linguistically. However, further understanding of the factors explaining the variance in the correlations will be needed before research and practical recommendations can be made.

Keywords

Imageability Linguistics Cross-linguistic Correlations 

Notes

Author note

The Collaboration of Aphasia Trialists (CATs research network) is funded by the European Cooperation in Science and Technology (COST, Action IS1208). For more information, please visit www.aphasiatrials.org. This project was partially supported by the Global Brain Health Institute (A.R.). The Basque team (A.M.I. and M.P.) was partially supported by the Basque Government (Grant No. IT983-16-GIC 15/129) and MINECO/FEDER (FFI2015-68589-C2-1-P). The work by the authors from Norway (M.L. and H.G.S.) was partly supported by the Research Council of Norway through its Centres of Excellence funding scheme (223265). The Croatian study (J.K.K.) was supported by the Croatian Science Foundation and the project “Adult Language Processing” (ALP, Grant HRZZ-2421-UIP-11-2013). The Catalan study (A.G.) was supported by project FFI2014-56968-C4-1-P. The Serbian study (J.B. and J.V.) was supported by the Ministry of Education Science and Technological development grant (#IO175012). The Turkish study (I.M. and M.T.) was supported by Anadolu University, Scientific Research Project (BAP) Grant 1509S632. The Spanish study (S.M.-F.) was partly supported by PROGRAM (University of Copenhagen Excellence Programme for Interdisciplinary Research) and projects from the Ministerio de Economía y Competitividad (FFI2015-68589-C2-1-P and FFI2014-61888-EXP) The Greek group thanks Sophia Apostolopoulou and Michaela Nerantzini for their contribution to data collection.

Supplementary material

13428_2017_936_MOESM1_ESM.docx (35 kb)
ESM 1(DOCX 34 kb)

References

  1. Alario, F. X., Ferrand, L., Laganaro, M., New, B., Frauenfelder, U. H., & Segui, J. (2004). Predictors of picture naming speed. Behavior Research Methods, Instruments, & Computers, 36, 140–155. doi:10.3758/BF03195559 CrossRefGoogle Scholar
  2. Allport, D. A., & Funnell, E. (1981). Components of the mental lexicon. Philosophical Transactions of the Royal Society B, 295, 397–410.CrossRefGoogle Scholar
  3. Alonso, M. A., Fernández, A., & Díez, E. (2015). Subjective age-of-acquisition norms for 7,039 Spanish words. Behavior Research Methods, 47, 268–274. doi:10.3758/s13428-014-0454-2 CrossRefPubMedGoogle Scholar
  4. Alwin, D. F., & McCammon, R. J. (2001). Aging, cohorts, and verbal ability. Journals of Gerontology, 56B, S151–S161.CrossRefGoogle Scholar
  5. Bedny, M., & Thompson-Schill, S. L. (2006). Neuroanatomically separable effects of imageability and grammatical class during single-word comprehension. Brain and Language, 98, 127–139.CrossRefPubMedGoogle Scholar
  6. Berndt, R. S., Haendiges, A. N., Burton, M. W., & Mitchum, C. C. (2002). Grammatical class and imageability in aphasic word production: Their effects are independent. Journal of Neurolinguistics, 15, 353–371.CrossRefGoogle Scholar
  7. Bird, H., Franklin, S., & Howard, D. (2001). Age of acquisition and imageability ratings for a large set of words, including verbs and function words. Behavior Research Methods, Instruments, & Computers, 33, 73–79. doi:10.3758/BF03195349 CrossRefGoogle Scholar
  8. Bleasdale, F. A. (1987). Concreteness-dependent associative priming: Separate lexical organization for concrete and abstract words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 582–594. doi:10.1037/0278-7393.13.4.582 Google Scholar
  9. Blomberg, F., & Öberg, C. (2015). Swedish and English word ratings of imageability, familiarity and age of acquisition are highly correlated. Nordic Journal of Linguistics, 38, 351–364.CrossRefGoogle Scholar
  10. Bonett, D. G., & Wright, T. A. (2000). Sample size requirements for estimating Pearson, Kendall and Spearman correlations. Psychometrika, 65, 23–28. doi:10.1007/BF02294183 CrossRefGoogle Scholar
  11. Breedin, S. D., Saffran, E. M., & Coslett, H. B. (1994). Reversal of the concreteness effect in a patient with semantic dementia. Cognitive Neuropsychology, 11, 617–660. doi:10.1080/02643299408251987 CrossRefGoogle Scholar
  12. Carroll, J. B., & White, M. N. (1973). Word frequency and age of acquisition as determiners of picture-naming latency. Quarterly Journal of Experimental Psychology, 25, 85–95. doi:10.1080/14640747308400325 CrossRefGoogle Scholar
  13. Chiarello, C., Shears, C., & Lund, K. (1999). Imageability and distributional typicality measures of nouns and verbs in contemporary English. Behavior Research Methods, Instruments, & Computers, 31, 603–637. doi:10.3758/BF03200739 CrossRefGoogle Scholar
  14. Coltheart, M. (1981). The MRC psycholinguistic database. Quarterly Journal of Experimental Psychology, 33, 497–505. doi:10.1080/14640748108400805 CrossRefGoogle Scholar
  15. Coltheart, V., Laxon, V. J., & Keating, C. (1988). Effects of word imageability and age of acquisition on children’s reading. British Journal of Psychology, 79, 1–12. doi:10.1111/j.2044-8295.1988.tb02270.x CrossRefGoogle Scholar
  16. Cortese, M. J., & Fugett, A. (2004). Imageability ratings for 3,000 monosyllabic words. Behavior Research Methods, Instruments, & Computers, 36, 384–387. doi:10.3758/BF03195585 CrossRefGoogle Scholar
  17. Cortese, M. J., & Khanna, M. M. (2008). Age of acquisition ratings for 3,000 monosyllabic words. Behavior Research Methods, 40, 791–794. doi:10.3758/BRM.40.3.791 CrossRefPubMedGoogle Scholar
  18. Cortese, M. J., Khanna, M. M., & Hacker, S. (2010). Recognition memory for 2,578 monosyllabic words. Memory, 18, 595–609.CrossRefPubMedGoogle Scholar
  19. Cortese, M. J., McCarty, D. P., & Schock, J. (2015). A mega recognition memory study of 2897 disyllabic words. Quarterly Journal of Experimental Psychology, 68, 1489–1501. doi:10.1080/17470218.2014.945096 CrossRefGoogle Scholar
  20. Cortese, M. J., & Schock, J. (2013). Imageability and age of acquisition effects in disyllabic word recognition. Quarterly Journal of Experimental Psychology, 66, 946–972. doi:10.1080/17470218.2012.722660 CrossRefGoogle Scholar
  21. Davelaar, E., & Besner, D. (1988). Word identification: Imageability, semantics, and the content-functor distinction. Quarterly Journal of Experimental Psychology, 40, 789–799.CrossRefGoogle Scholar
  22. Dawes, J. G. (2012). Do data characteristics change according to the number of scale points used? An experiment using 5 point, 7 point and 10 point scales. International Journal of Market Research, 50, 61–77.Google Scholar
  23. de Aguiar, V., Bastiaanse, R., Capasso, R., Gandolfi, M., Smania, N., Rossi, G., & Miceli, G. (2015). Can tDCS enhance item-specific effects and generalization after linguistically motivated aphasia therapy for verbs? Frontiers in Behavioral Neuroscience, 9, 190.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Della Rosa, P. A., Catricalà, E., Vigliocco, G., & Cappa, S. F. (2010). Beyond the abstract–concrete dichotomy: Mode of acquisition, concreteness, imageability, familiarity, age of acquisition, context availability, and abstractness norms for a set of 417 Italian words. Behavior Research Methods, 42, 1042–1048. doi:10.3758/BRM.42.4.1042 CrossRefPubMedGoogle Scholar
  25. Desrochers, A., & Thompson, G. L. (2009). Subjective frequency and imageability ratings for 3,600 French nouns. Behavior Research Methods, 41, 546–557. doi:10.3758/BRM.41.2.546 CrossRefPubMedGoogle Scholar
  26. Diaz, M. T., Johnson, M. A., Burke, D. M., & Madden, D. J. (2014). Age-related differences in the neural bases of phonological and semantic processes. Journal of Cognitive Neuroscience, 26, 2798–2811.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Duñabeitia, J. A., Casaponsa, A., Dimitropoulou, M., Martí, A., Larraza, S., & Carreiras, M. (2017). BaSp: A Basque–Spanish database of translation equivalents. Manuscript in preparation.Google Scholar
  28. Franklin, S., Howard, D., & Patterson, K. (1995). Abstract word anomia. Cognitive Neuropsychology, 12, 549–566.CrossRefGoogle Scholar
  29. Fyndanis, V., Lind, M., Varlokosta, S., Kambanaros, M., Soroli, E., Ceder, K., . . . Howard, D. (2017). Cross-linguistic adaptations of The Comprehensive Aphasia Test: Challenges and solutions. Clinical Linguistics and Phonetics. Advance online publication. doi:10.1080/02699206.2017.1310299
  30. Hanley, R. J., & Kay, J. (1997). An effect of imageability on the production of phonological errors in auditory repetition. Cognitive Neuropsychology, 14, 1065–1084.CrossRefGoogle Scholar
  31. Holmes, V. M., & Langford, J. (1976). Comprehension and recall of abstract and concrete sentences. Journal of Verbal Learning and Verbal Behavior, 15, 559–566. doi:10.1016/0022-5371(76)90050-5 CrossRefGoogle Scholar
  32. Howard, D., & Franklin, S. (1988). Missing the meaning? A cognitive neuropsychological study of the processing of words by an aphasic patient. Cambridge: MIT Press.Google Scholar
  33. Kambanaros, M., & Grohmann, K. K. (2015). Grammatical class effects across impaired child and adult populations. Frontiers in Psychology, 6(1670), 1–17. doi:10.3389/fpsyg.2015.01670 Google Scholar
  34. Kambanaros, M., Grohmann, K. K., & Michaelides, M. (2013). Lexical retrieval for nouns and verbs in typically developing bilectal children. First Language, 33, 182–199.CrossRefGoogle Scholar
  35. Kuvač Kraljević, J., & Olujić, M. (2017). Croatian Lexical Database. Manuscript submitted for publication.Google Scholar
  36. Law, S. P., Kong, A. P. H., Lai, L. W. S., & Lai, C. (2015). Effects of context and word class on lexical retrieval in Chinese speakers with anomic aphasia. Aphasiology, 29, 81–100.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Levelt, W. (2014). A history of psycholinguistics: The pre-Chomskyan era. Oxford: Oxford University Press.Google Scholar
  38. Lind, M., Simonsen, H. G., Hansen, P., Holm, E., & Mevik, B.-H. (2015). Norwegian words: A lexical database for clinicians and researchers. Clinical Linguistics and Phonetics, 29, 276–290.CrossRefPubMedGoogle Scholar
  39. Luzzatti, C., Raggi, R., Zonca, G., Pistarini, C., Contardi, A., & Pinna, G. D. (2002). Verb–noun double dissociation in aphasic lexical impairments: The role of word frequency and imageability. Brain and Language, 81, 432–444.CrossRefPubMedGoogle Scholar
  40. Ma, W., Golinkoff, R. M., Hirsh-Pasek, K., McDonough, C., & Tardif, T. (2009). Imageability predicts the age of acquisition of verbs in Chinese children. Journal of Child Language, 36, 405–423.CrossRefPubMedGoogle Scholar
  41. McMullen, P. A., & Bryden, M. P. (1987). The effects of word imageability and frequency on hemispheric asymmetry in lexical decisions. Brain and Language, 31, 11–25.CrossRefGoogle Scholar
  42. Morrison, C. M., & Ellis, A. W. (1995). Roles of word frequency and age of acquisition in word naming and lexical decision. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 116–133. doi:10.1037/0278-7393.21.1.116 Google Scholar
  43. Nickels, L., & Howard, D. (1994). A frequent occurrence? Factors affecting the production of semantic errors in aphasic naming. Cognitive Neuropsychology, 11, 289–320.CrossRefGoogle Scholar
  44. Nishimoto, T., Ueda, T., Miyawaki, K., Une, Y., & Takahashi, M. (2012). The role of imagery-related properties in picture naming: A newly standardized set of 360 pictures for Japanese. Behavior Research Methods, 44, 934–945. doi:10.3758/s13428-011-0176-7 CrossRefPubMedGoogle Scholar
  45. Paivio, A. (2014). Intelligence, dual coding theory, and the brain. Intelligence, 47, 141–158.CrossRefGoogle Scholar
  46. Paivio, A., Yuille, J. C., & Madigan, S. A. (1968). Concreteness, imagery, and meaningfulness values for 925 nouns. Journal of Experimental Psychology, 76(1, Pt. 2), 1–25. doi:10.1037/h0025327 CrossRefGoogle Scholar
  47. Plaut, D. C., & Shallice, T. (1993). Preservative and semantic influences on visual object naming errors in optic aphasia: A connectionist account. Journal of Cognitive Neuroscience, 5, 89–117.CrossRefPubMedGoogle Scholar
  48. Poulton, E. C. (1975). Range effects in experiments on people. American Journal of Psychology, 88, 3–32.CrossRefGoogle Scholar
  49. Proctor, R. W., & Vu, K.-P. L. (1999). Index of norms and ratings published in the Psychonomic Society journals. Behavior Research Methods, Instruments, & Computers, 31, 659–667. doi:10.3758/BF03200742 CrossRefGoogle Scholar
  50. Rofes, A., Capasso, R., & Miceli, G. (2015). Verb production tasks in the measurement of communicative abilities in aphasia. Journal of Clinical and Experimental Neuropsychology, 37, 483–502. doi:10.1080/13803395.2015.1025709 CrossRefPubMedGoogle Scholar
  51. Rofes, A., de Aguiar, V., & Miceli, G. (2015). A minimal standardization setting for language mapping tests: An Italian example. Neurological Sciences, 36, 1113–1119.CrossRefPubMedGoogle Scholar
  52. Sabsevitz, D. S., Medler, D. A., Seidenberg, M., & Binder, J. R. (2005). Modulation of the semantic system by word imageability. NeuroImage, 27, 188–200. doi:10.1016/j.neuroimage.2005.04.012 CrossRefPubMedGoogle Scholar
  53. Schock, J., Cortese, M. J., & Khanna, M. M. (2012). Imageability estimates for 3,000 disyllabic words. Behavior Research Methods, 44, 374–379. doi:10.3758/s13428-011-0162-0 CrossRefPubMedGoogle Scholar
  54. Schwanenflugel, P. J., Harnishfeger, K. K., & Stowe, R. W. (1988). Context availability and lexical decisions for abstract and concrete words. Journal of Memory and Language, 27, 499–520. doi:10.1016/0749-596X(88)90022-8 CrossRefGoogle Scholar
  55. Simonsen, H. G., Lind, M., Hansen, P., Holm, E., & Mevik, B.-H. (2013). Imageability of Norwegian nouns, verbs and adjectives in a cross-linguistic perspective. Clinical Linguistics & Phonetics, 27, 435–446. doi:10.3109/02699206.2012.752527 CrossRefGoogle Scholar
  56. Stoke, S. M. (1929). Memory for onomatopes. Pedagogical Seminary and Journal of Genetic Psychology, 36, 594–596.CrossRefGoogle Scholar
  57. Strain, E., Patterson, K., & Seidenberg, M. S. (1995). Semantic effects in single-word naming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 1140–1154. doi:10.1037/0278-7393.21.5.1140 PubMedGoogle Scholar
  58. Tyler, L. K., & Moss, H. E. (1997). Imageability and category-specificity. Cognitive Neuropsychology, 14, 293–318.CrossRefGoogle Scholar
  59. Tyler, L. K., Moss, H. E., Galpin, A., & Voice, J. K. (2002). Activating meaning in time: The role of imageability and form-class. Language and Cognitive Processes, 17, 471–502. doi:10.1080/01690960143000290 CrossRefGoogle Scholar
  60. Warrington, E. K. (1981). Concrete word dyslexia. British Journal of Psychology, 72, 175–196.CrossRefPubMedGoogle Scholar
  61. Whitworth, A., Webster, J., & Howard, D. (2014). A cognitive neuropsychological approach to assessment and intervention in aphasia: A clinician’s guide. Hove: Psychology Press.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  • Adrià Rofes
    • 1
  • Lilla Zakariás
    • 2
  • Klaudia Ceder
    • 3
  • Marianne Lind
    • 4
    • 5
  • Monica Blom Johansson
    • 3
  • Vânia de Aguiar
    • 1
  • Jovana Bjekić
    • 6
  • Valantis Fyndanis
    • 4
  • Anna Gavarró
    • 7
  • Hanne Gram Simonsen
    • 4
  • Carlos Hernández Sacristán
    • 8
  • Maria Kambanaros
    • 9
  • Jelena Kuvač Kraljević
    • 10
  • Silvia Martínez-Ferreiro
    • 11
  • İlknur Mavis
    • 12
  • Carolina Méndez Orellana
    • 13
  • Ingrid Sör
    • 3
  • Ágnes Lukács
    • 14
  • Müge Tunçer
    • 12
  • Jasmina Vuksanović
    • 6
  • Amaia Munarriz Ibarrola
    • 15
  • Marie Pourquie
    • 16
  • Spyridoula Varlokosta
    • 17
  • David Howard
    • 18
  1. 1.Trinity College DublinDublinIreland
  2. 2.University of PotsdamPotsdamGermany
  3. 3.Uppsala UniversityUppsalaSweden
  4. 4.University of OsloOsloNorway
  5. 5.StatpedOsloNorway
  6. 6.University of BelgradeBelgradeSerbia
  7. 7.Universitat Autònoma de BarcelonaBarcelonaSpain
  8. 8.Universitat de ValènciaValènciaSpain
  9. 9.Cyprus University of TechnologyLimassolCyprus
  10. 10.University of ZagrebZagrebCroatia
  11. 11.University of CopenhagenCopenhagenDenmark
  12. 12.Anadolu UniversityEskişehirTurkey
  13. 13.Universidad Católica de ChileSantiagoChile
  14. 14.Budapest University of Technology and EconomicsBudapestHungary
  15. 15.University of the Basque Country, UPV/EHULeioaSpain
  16. 16.Basque Center on Cognition Brain and LanguageDonostia–San SebastiánSpain
  17. 17.National and Kapodistrian University of AthensAthensGreece
  18. 18.Newcastle UniversityNewcastle upon TyneUK

Personalised recommendations