Alexander, R. A., & Govern, D. M. (1994). A new and simpler approximation of ANOVA under variance heterogeneity. Journal of Educational Statistics, 19, 91–101. doi:10.2307/1165140
Article
Google Scholar
Angelis, D., & Young, G. A. (1998). Bootstrap method. Encyclopedia of Biostatistics.
Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the Royal Society, Series A, 160, 268–282. doi:10.1098/rspa.1937.0109
Article
Google Scholar
Bendayan, R., Arnau, J., Blanca, M. J., & Bono, R. (2014). Comparison of the procedures of Fleishman and Ramberg et al. for generating non-normal data in simulation studies. Anales de Psicología, 30, 364–371. doi:10.6018/analesps.30.1.135911
Article
Google Scholar
Bhat, B. R., Badade, M. N., & Aruna Rao, K. (2002). A new test for equality of variances for k normal populations. Communication in Statistics-Simulation and Computation, 31, 567–587. doi:10.1081/SAC-120004313
Article
Google Scholar
Blanca, M. J., Arnau, J., López-Montiel, D., Bono, R., & Bendayan, R. (2013). Skewness and kurtosis in real data samples. Methodology, 9, 78–84. doi:10.1027/1614-2241/a000057
Article
Google Scholar
Box, G. E. P. (1953). Non-normality and tests on variances. Biometrika, 40, 318–335. doi:10.1093/biomet/40.3-4.318
Article
Google Scholar
Box, G. E. P. (1954). Some theorems on quadratic forms applied in the study of analysis of variance problem. I. Effect of inequality of variance in one-way classification. The Annals of Mathematical Statistics, 25, 290–302. doi:10.1214/aoms/1177728786
Article
Google Scholar
Bradley, J. V. (1978). Robustness? British Journal of Mathematical and Statistical Psychology, 31, 144–152. doi:10.1111/j.2044-8317.1978.tb00581.x
Article
Google Scholar
Brown, M. B., & Forsythe, A. B. (1974). The small sample behaviour of some statistics which test the equality of several means. Technomectrics, 16, 129–132. doi:10.1080/00401706.1974.10489158
Article
Google Scholar
Brunner, E., Dette, H., & Munk, A. (1997). Box-type approximations in nonparametric factorial designs. Journal of the American Statistical Association, 92, 1494–1502. doi:10.1080/01621459.1997.10473671
Article
Google Scholar
Bryk, A. S., & Raudenbush, S. W. (1988). Heterogeneity of variance in experimental studies: A challenge to conventional interpretations. Psychological Bulletin, 104, 396–404. doi:10.1037/0033-2909.104.3.396
Article
Google Scholar
Büning, H. (1997). Robust analysis of variance. Journal of Applied Statistics, 24, 319–332. doi:10.1080/02664769723710
Article
Google Scholar
Burton, A., Altman, D. G., Royston, P., & Holder, R. L. (2006). The design of simulation studies in medical statistics. Statistics in Medicine, 25, 4279–4292.
Article
PubMed
Google Scholar
Chen, S. Y., & Chen, H. J. (1998). Single-stage analysis of variance under heteroscedasticity. Communications in Statistics – Simulation and Computation, 27, 641–666. doi:10.1080/03610919808813501
Article
Google Scholar
Clinch, J. J., & Keselman, H. J. (1982). Parametric alternatives to the analysis of variance. Journal of Educational Statistics, 7, 207–214. doi:10.2307/1164645
Article
Google Scholar
Cochran, W. (1941). The distribution of the largest of a set of estimated variances as a fraction of their total. Annals of Human Genetics, 11, 47–52. doi:10.1111/j.1469-1809.1941.tb02271.x
Google Scholar
Conover, W. J., Johnson, M. E., & Johnson, M. M. (1981). A comparative study of test for homogeneity of variances, with applications to the outer continental shelf bidding data. Technometrics, 23, 351–361. doi:10.2307/1268225
Article
Google Scholar
Cribbie, R. A., Fiksenbaum, L., Keselman, H. J., & Wilcox, R. R. (2012). Effect of non-normality on test statistics for one-way independent group designs. British Journal of Mathematical and Statistical Psychology, 65, 56–73. doi:10.1111/j.2044-8317.2011.02014.x
Article
PubMed
Google Scholar
Cribbie, R. A., Wilcox, R. R., Bewell, C., & Keselman, H. J. (2007). Tests for treatment group equality when data are nonnormal and heteroscedastic. Journal of Modern Applied Statistical Methods, 6, 117–132.
Article
Google Scholar
David, F. N., & Johnson, N. L. (1951). The effect of non-normality on the power function of the F-test in the analysis of variance. Biometrika, 38, 43–57. doi:10.1093/biomet/38.1-2.43
Article
PubMed
Google Scholar
Dean, A., & Voss, D. (1999). Design and analysis of experiments. New York: Springer-Verlag. doi:10.1007/b97673
Book
Google Scholar
Erceg-Hurn, D. M., & Mirosevich, V. M. (2008). Modern robust statistical methods: An easy way to maximize the accuracy and power of your research. American Psychologist, 63, 591–601. doi:10.1037/0003-066X.63.7.591
Article
PubMed
Google Scholar
Fan, W., & Hancock, G. R. (2012). Robust means modeling: An alternative for hypothesis testing of independent means under variance heterogeneity and nonnormality. Journal of Educational and Behavioral Statistics, 37, 137–156. doi:10.3102/1076998610396897
Article
Google Scholar
Gamage, J., & Weerahandi, S. (1998). Size performance of some tests in one-way ANOVA. Communications in Statistics–Simulation and Computation, 27, 625–640. doi:10.1080/03610919808813500
Article
Google Scholar
Glass, G. V., Peckham, P. D., & Sanders, J. R. (1972). Consequences of failure to meet assumptions underlying the fixed effects analyses of variance and covariance. Review of Educational Research, 42, 237–288. doi:10.3102/00346543042003237
Article
Google Scholar
Glass, G. V., & Stanley, J. C. (1970). Statistical Methods in Education and Psychology. Englewood Cliffs: Prentice-Hall.
Google Scholar
Golinski, C., & Cribbie, R. A. (2009). The expanding role of quantitative methodologists in advancing psychology. Canadian Psychology, 50, 83–90. doi:10.1037/a0015180
Article
Google Scholar
Grissom, R. J. (2000). Heterogeneity of variance in clinical data. Journal of Consulting and Clinical Psychology, 68, 155–165. doi:10.1037/0022-006X.68.1.155
Article
PubMed
Google Scholar
Grissom, R. J., & Kim, J. J. (2001). Review of assumptions and problems in the appropriate conceptualization of effect size. Psychological Methods, 6, 135–146. doi:10.1037//1082-989X.6.2.135
Article
PubMed
Google Scholar
Hartley, H. O. (1950). The use of range in analysis of variance. Biometrika, 37, 271–280. doi:10.1093/biomet/37.3-4.271
Article
PubMed
Google Scholar
Harwell, M. R., Rubinstein, E. N., Hayes, W. S., & Olds, C. C. (1992). Summarizing Monte Carlo results in methodological research: The one- and two-factor fixed effects ANOVA cases. Journal of Educational and Behavioral Statistics, 17, 315–339. doi:10.3102/10769986017004315
Article
Google Scholar
Hays, W. L. (1981). Statistics (3rd ed.). New York: Holt, Rinehart & Winston.
Google Scholar
Horsnell, G. (1953). The effect of unequal group variances on the F-test for the homogeneity of group means. Biometrika, 40, 128–136. doi:10.2307/2333104
Article
Google Scholar
Hsu, P. L. (1938). Contribution to the theory of “Student’s” t-test as applied to the problem of two samples. Statistical Research Memoirs, 2, 1–24.
Google Scholar
James, G. S. (1951). The comparison of several groups of observations when the ratios of the population variances are unknown. Biometrika, 38, 324–329. doi:10.1093/biomet/38.3-4.324
Article
Google Scholar
Kang, Y., Harring, J. R., & Li, M. (2015). Reexamining the impact of nonnormality in two-group comparison procedures. The Journal of Experimental Education, 83, 147–174. doi:10.1080/00220973.2013.876605
Article
Google Scholar
Keppel, G. (1991). Design and analysis: A researcher’s handbook (3rd ed.). Englewood Cliffs: Prentice-Hall.
Google Scholar
Keppel, G., Saufley, W. H., & Tokunaga, H. (1992). Introduction to design and analysis: A student’s handbook (2nd ed.). New York: W. H. Freeman.
Google Scholar
Keppel, G., & Wickens, T. D. (2004). Design and analysis: A researcher's handbook (4th ed.). Englewood Cliffs: Prentice Hall.
Google Scholar
Keselman, H. J., Algina, J., Kowalchuk, R. K., & Wolfinger, R. D. (1999). A comparison of recent approaches to the analysis of repeated measurements. British Journal of Mathematical and Statistical Psychology, 52, 63–78. doi:10.1348/000711099158964
Article
Google Scholar
Keselman, H. J., Huberty, C. J., Lix, L. M., Olejnik, S., Cribbie, R. A., Donahue, B., … & Levin, J. R. (1998). Statistical practices of educational researchers: An analysis of their ANOVA, MANOVA, and ANCOVA analyses. Review of Educational Research, 68, 350–386. doi:10.3102/00346543068003350
Kieffer, K. M., Reese, R. J., & Thompson, B. (2001). Statistical techniques employed in AERJ and JCP articles from 1988 to 1997: A methodological review. The Journal of Experimental Education, 69, 280–309. doi:10.1080/00220970109599489
Article
Google Scholar
Kirk, R. E. (2013). Experimental design. Procedures for the behavioral sciences (4th ed.). Thousand Oaks: Sage Publications.
Book
Google Scholar
Kohr, R. L., & Games, P. A. (1974). Robustness of the analysis of variance, the Welch procedure and a Box procedure to heterogeneous variances. The Journal of Experimental Education, 43, 61–69. doi:10.1080/00220973.1974.10806305
Article
Google Scholar
Kowalchuk, R. K., Keselman, H. J., Algina, J., & Wolfinger, R. D. (2004). The analysis of repeated measurements with mixed-model adjusted F tests. Educational and Psychological Measurement, 64, 224–242. doi:10.1177/0013164403260196
Article
Google Scholar
Krishnamoorthy, K., Lu, F., & Mathew, T. (2007). A parametric bootstrap approach for ANOVA with unequal variances: Fixed and random models. Computational Statistics & Data Analysis, 51, 5731–5742. doi:10.1016/j.csda.2006.09.039
Article
Google Scholar
Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47, 538–621. doi:10.1080/01621459.1952.10483441
Article
Google Scholar
Lee, S., & Ahn, C. H. (2003). Modified ANOVA for unequal variances. Communications in Statistics–Simulation and Computation, 32, 987–1004. doi:10.1081/SAC-120023874
Article
Google Scholar
Levene, H. (1960). Robust tests for equality of variance. In I. Olkin & H. Hotelling (Eds.), Contributions to probability and statistics (pp. 278–292). Palo Alto: Stanford University Press.
Google Scholar
Li, X., Wang, J., & Liang, H. (2011). Comparison of several means: A fiducial based approach. Computational Statistics and Data Analysis, 55, 1993–2002. doi:10.1016/j.csda.2010.12.009
Article
Google Scholar
Lindquist, E. F. (1953). Design and analysis of experiments in psychology and education. Boston: Houghton Mifflin.
Google Scholar
Lix, L. M., & Keselman, H. J. (1998). To trim or not to trim: Tests of mean equality under heteroscedasticity and nonnormality. Educational and Psychological Measurement, 58, 409–429. doi:10.1177/0013164498058003004
Article
Google Scholar
Lix, L. M., Keselman, J. C., & Keselman, H. J. (1996). Consequences of assumption violations revisited: A quantitative review of alternatives to the one-way analysis of variance F test. Review of Educational Research, 66, 579–619. doi:10.3102/00346543066004579
Google Scholar
Maxwell, S. E., & Delaney, H. D. (1990). Designing experiments and analyzing data: A model comparison perspective. Belmont: Wadsworth.
Google Scholar
Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analyzing data: A model comparison perspective (2nd ed.). Mahwah: Lawrence Erlbaum Associates.
Google Scholar
Mendes, M., & Pala, A. (2004). Evaluation of four tests when normality and homogeneity of variance assumptions are violated. Journal of Applied Sciences, 4, 38–42. doi:10.3923/jas.2004.38.42
Article
Google Scholar
Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 105, 156–166. doi:10.1037/0033-2909.105.1.156
Article
Google Scholar
Mickelson, W. T. (2013). A Monte Carlo simulation of the robust rank-order test under various population symmetry conditions. Journal of Modern Applied Statistical Methods, 12, 21–33.
Article
Google Scholar
Moder, K. (2007). How to keep the Type I error rate in ANOVA if variances are heteroscedastic. Austrian Journal of Statistics, 36, 179–188.
Article
Google Scholar
Moder, K. (2010). Alternatives to F-test in one way ANOVA in case of heterogeneity of variances (a simulation study). Psychological Test and Assessment Modeling, 52, 343–353.
Google Scholar
Montgomery, D. C. (1991). Design and analysis of experiments (3rd ed.). New York: Wiley.
Google Scholar
Norton, D. W. (1952). An empirical investigation of the effects of nonnormality and heterogeneity upon the F-test of analysis of variance. Unpublished doctoral dissertation, University of Iowa, Iowa City.
Parra-Frutos, I. (2014). Controlling the Type I error rate by using the nonparametric bootstrap when comparing means. British Journal of Mathematical and Statistical Psychology, 67, 117–132. doi:10.1111/bmsp.12011
Article
PubMed
Google Scholar
Patrick, J. D. (2007). Simulations to analyze Type I error and power in the ANOVA F test and nonparametric alternatives (Master’s thesis, University of West Florida). Retrieved from http://etd.fcla.edu/WF/WFE0000158/Patrick_Joshua_Daniel_200905_MS.pdf
Robey, R. R., & Barcikowski, R. S. (1992). Type I error and the number of iterations in Monte Carlo studies of robustness. British Journal of Mathematical and Statistical Psychology, 45, 283–288. doi:10.1111/j.2044-8317.1992.tb00993.x
Article
Google Scholar
Rogan, J. C., & Keselman, H. J. (1977). Is the ANOVA F-test robust to variance heterogeneity when sample sizes are equal? An investigation via a coefficient of variation. American Educational Research Journal, 14, 493–498. doi:10.3102/00028312014004493
Article
Google Scholar
Rogan, J. C., Keselman, H. J., & Breen, L. J. (1977). Assumption violations and rates of Type I error for the Tukey multiple comparison test: A review and empirical investigation via a coefficient of variance variation. Journal of Experimental Education, 46, 20–25. doi:10.1080/00220973.1977.11011605
Article
Google Scholar
Ruscio, J., & Roche, B. (2012). Variance heterogeneity in published psychological research: A review and a new index. Methodology, 8, 1–11. doi:10.1027/1614-2241/a000034
Article
Google Scholar
SAS Institute Inc. (2013). SAS® 9.4 guide to software Updates. Cary: SAS Institute Inc.
Google Scholar
Sawilowsky, S. S. (2002). Fermat, Shubert, Einstein, and Behrens-Fisher: The probable difference between two means when σ1
2 ≠ σ2
2. Journal of Modern Applied Statistical Methods, 1, 461–472.
Article
Google Scholar
Sawilowsky, S. S., & Blair, R. C. (1992). A more realistic look at the robustness and Type II error properties of the t test to departures from population normality. Psychological Bulletin, 111, 352–360. doi:10.1037/0033-2909.111.2.352
Article
Google Scholar
Scheffé, H. (1959). The analysis of variance. New York: Wiley.
Google Scholar
Sharma, D., & Kibria, B. M. G. (2013). On some test statistics for testing homogeneity of variances: A comparative study. Journal of Statistical Computation and Simulation, 83, 1944–1963. doi:10.1080/00949655.2012.675336
Article
Google Scholar
Skidmore, S. T., & Thompson, B. (2010). Statistical techniques used in published articles: A historical review of reviews. Educational and Psychological Measurement, 70, 777–795. doi:10.1177/0013164410379320
Article
Google Scholar
Tabachnick, B. G., & Fidell, L. S. (2007). Experimental design using ANOVA. Belmont: Thomson Brooks/Cole.
Google Scholar
Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Boston: Pearson Education, Inc.
Google Scholar
Tomarken, A. J., & Serling, R. C. (1986). Comparison of ANOVA alternatives under variance heterogeneity and specific noncentrality structures. Psychological Bulletin, 99, 90–99. doi:10.1037/0033-2909.99.1.90
Article
Google Scholar
Weerahandi, S. (1995). ANOVA under unequal error variances. Biometrics, 51, 589–599. doi:10.2307/2532947
Article
Google Scholar
Welch, B. L. (1951). On the comparison of several mean values: An alternative approach. Biometrika, 38, 330–336. doi:10.1093/biomet/38.3-4.330
Article
Google Scholar
Wilcox, R. R. (1987). New designs in analysis of variance. Annual Review of Psychology, 38, 29–60. doi:10.1146/annurev.ps.38.020187.000333
Article
Google Scholar
Wilcox, R. R. (1995). ANOVA: The practical importance of heteroscedastic methods, using trimmed means versus means, and designing simulation studies. British Journal of Mathematical and Statistical Psychology, 48, 99–114. doi:10.1111/j.2044-8317.1995.tb01052.x
Article
Google Scholar
Wilcox, R. R., Charlin, V. L., & Thompson, K. L. (1986). New Monte Carlo results on the robustness of the ANOVA F, W and F statistics. Communications in Statistics–Simulation and Computation, 15, 933–943. doi:10.1080/03610918608812553
Article
Google Scholar
Wilcox, R. R., Keselman, H. J., & Kowalchuk, R. H. (1998). Can tests for treatment group equality be improved? The bootstrap and trimmed means conjecture. British Journal of Mathematical and Statistical Psychology, 51, 123–143. doi:10.1111/j.2044-8317.1998.tb00670.x
Article
Google Scholar
Winer, B. J., Brown, D. R., & Michels, K. M. (1991). Statistical principles in experimental design (3rd ed.). New York: McGraw-Hill.
Google Scholar
Winner, B. J. (1971). Statistical principles in experimental designs (2nd ed.). New York: McGraw-Hill.
Google Scholar
Wuensch, K. L. (2017). One-way independent samples analysis of variance. Retrieved from http://core.ecu.edu/psyc/wuenschk/docs30/anova1.pdf
Yiğit, E., & Gökpınar, F. (2010). A simulation study on tests for one-way ANOVA under the unequal variance assumption. Communications Faculty of Sciences University of Ankara, Series, A1(59), 15–34. doi:10.1501/Commua1_0000000660
Google Scholar
Zijlstra, W. (2004). Comparing the Student’s t and the ANOVA contrast procedure with five alternative procedures (Master’s thesis, Rijksuniversiteit Groningen). Retrieved from http://www.ppsw.rug.nl/~kiers/ReportZijlstra.pdf
Zimmerman, D. W. (2004). A note on preliminary tests of equality of variances. British Journal of Mathematical and Statistical Psychology, 57, 173–181. doi:10.1348/000711004849222
Article
PubMed
Google Scholar