OBAT: An open-source and low-cost operant box for auditory discriminative tasks

  • Mauricio Watanabe Ribeiro
  • José Firmino Rodrigues Neto
  • Edgard Morya
  • Fabrício Lima Brasil
  • Mariana Ferreira Pereira de Araújo
Article

Abstract

Operant-conditioning boxes are widely used in animal training, allowing researchers to shape specific behaviors through reinforcements and/or punishments. Commercially available devices are expensive and run with proprietary software and hardware, hampering adaptations for the specific needs of an experiment. Therefore, many low-cost and open-source devices have recently been developed, but there are still few options for studying auditory behaviors. To overcome this problem, we developed a device based on a computer and an Arduino Mega 2560 board, named OBAT (Operant Box for Auditory Tasks), designed to present two different auditory stimuli to small primates. It has three modules: sound delivery, response bars, and reward system. We estimate that OBAT is at least 4–10 times cheaper than commercially available operant-conditioning boxes. Data from a behavioral pilot test ensured that the device can be used to train a marmoset in an auditory discrimination task. In addition, despite its low cost, accuracy tests showed that the OBAT operates with a high temporal precision. All schematics and software source code are available so that other groups can easily replicate the experiment or adapt the device to their own needs.

Keywords

Operant-conditioning box Auditory processing Discriminative learning Arduino 

Notes

Author note

This project was supported by the National Institutes of Science and Technology program Brain Machine Interface (INCT INCEMAQ) of the National Council for Scientific and Technological Development (CNPq/MCTI), Rio Grande do Norte Research Foundation (FAPERN), Coordination for the Improvement of Higher Education Personnel (CAPES), Brazilian Innovation Agency (FINEP), and Ministry of Education (MEC). We thank Denis Matrov for his help with animal handling at the beginning of the project and for his fruitful discussions of the former versions of this article. We also thank Phillip César da Silva for helping with the electrical boards and schematics.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflicts of interest.

Supplementary material

13428_2017_906_MOESM1_ESM.docx (1.1 mb)
ESM 1(DOCX 1165 kb)
13428_2017_906_MOESM2_ESM.wmv (2.5 mb)
ESM 2(WMV 2525 kb)

References

  1. Bezerra, B. M., & Souto, A. (2008). Structure and usage of the vocal repertoire of Callithrix jacchus. International Journal of Primatology, 29, 671. doi:10.1007/s10764-008-9250-0 CrossRefGoogle Scholar
  2. Chance, P. (1999). Thorndike’s puzzle boxes and the origins of the experimental analysis of behavior. Journal of the Experimental Analysis of Behavior, 72, 433–440.CrossRefPubMedPubMedCentralGoogle Scholar
  3. D’Ausilio, A. (2012). Arduino: A low-cost multipurpose lab equipment. Behavior Research Methods, 44, 305–313. doi:10.3758/s13428-011-0163-z CrossRefPubMedGoogle Scholar
  4. Devarakonda, K., Nguyen, K. P., & Kravitz, A. V. (2016). ROBucket: A low cost operant chamber based on the Arduino microcontroller. Behavior Research Methods, 48, 503–509. doi:10.3758/s13428-015-0603-2 CrossRefPubMedGoogle Scholar
  5. DiMattina, C., & Wang, X. (2006). Virtual vocalization stimuli for investigating neural representations of species-specific vocalizations. Journal of Neurophysiology, 95, 1244–1262. doi:10.1152/jn.00818.2005 CrossRefPubMedGoogle Scholar
  6. Epple, G. (1968). Comparative studies on vocalization in marmoset monkeys (Hapalidae). Folia Primatologica; International Journal of Primatology, 8, 1–40. doi:10.1159/000155129 CrossRefPubMedGoogle Scholar
  7. Fagot, J., & Paleressompoulle, D. (2009). Automatic testing of cognitive performance in baboons maintained in social groups. Behavior Research Methods, 41, 396–404. doi:10.3758/BRM.41.2.396 CrossRefPubMedGoogle Scholar
  8. Hoffman, A. M., Song, J., & Tuttle, E. M. (2007). ELOPTA: A novel microcontroller-based operant device. Behavior Research Methods, 39, 776–782. doi:10.3758/BF03192968 CrossRefPubMedGoogle Scholar
  9. Kangas, B. D., & Bergman, J. (2012). A novel touch-sensitive apparatus for behavioral studies in unrestrained squirrel monkeys. Journal of Neuroscience Methods, 209, 331–336. doi:10.1016/j.jneumeth.2012.06.028 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Markham, M. R., Butt, A. E., & Dougher, M. J. (1996). A computer touch-screen apparatus for training visual discriminations in rats. Journal of the Experimental Analysis of Behavior, 65, 173–182. doi:10.1901/jeab.1996.65-173 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Müller, C. A., Schmitt, K., Barber, A. L. A., & Huber, L. (2015). Dogs can discriminate emotional expressions of human faces. Current Biology, 25, 601–605. doi:10.1016/j.cub.2014.12.055 CrossRefPubMedGoogle Scholar
  12. Oh, J., & Fitch, W. T. (2017). CATOS (Computer Aided Training/Observing System): Automating animal observation and training. Behavior Research Methods, 49, 13–23. doi:10.3758/s13428-015-0694-9 CrossRefPubMedGoogle Scholar
  13. Okano, H., Hikishima, K., Iriki, A., & Sasaki, E. (2012). The common marmoset as a novel animal model system for biomedical and neuroscience research applications. Seminars in Fetal and Neonatal Medicine, 17, 336–340. doi:10.1016/j.siny.2012.07.002 CrossRefPubMedGoogle Scholar
  14. Osmanski, M. S., & Wang, X. (2011). Measurement of absolute auditory thresholds in the common marmoset (Callithrix jacchus). Hearing Research, 277, 127–133. doi:10.1016/j.heares.2011.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Pineño, O. (2014). ArduiPod Box: A low-cost and open-source Skinner box using an iPod Touch and an Arduino microcontroller. Behavior Research Methods, 46, 196–205. doi:10.3758/s13428-013-0367-5 CrossRefPubMedGoogle Scholar
  16. Remington, E. D., Osmanski, M. S., & Wang, X. (2012). An operant conditioning method for studying auditory behaviors in marmoset monkeys. PLoS ONE, 7, e47895. doi:10.1371/journal.pone.0047895 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Rizzi, G., Lodge, M. E., & Tan, K. R. (2016). Design and construction of a low-cost nose poke system for rodents. MethodsX, 3, 326–332. doi:10.1016/j.mex.2016.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Sasaki, E., Suemizu, H., Shimada, A., Hanazawa, K., Oiwa, R., Kamioka, M.,…Nomura, T. (2009). Generation of transgenic non-human primates with germline transmission. Nature, 459, 523–527. doi:10.1038/nature08090
  19. Steurer, M. M., Aust, U., & Huber, L. (2012). The Vienna comparative cognition technology (VCCT): An innovative operant conditioning system for various species and experimental procedures. Behavior Research Methods, 44, 909–918. doi:10.3758/s13428-012-0198-9 CrossRefPubMedGoogle Scholar
  20. Takemoto, A., Izumi, A., Miwa, M., & Nakamura, K. (2011). Development of a compact and general-purpose experimental apparatus with a touch-sensitive screen for use in evaluating cognitive functions in common marmosets. Journal of Neuroscience Methods, 199, 82–86. doi:10.1016/j.jneumeth.2011.04.029 CrossRefPubMedGoogle Scholar
  21. Wijnen, B., Hunt, E. J., Anzalone, G. C., & Pearce, J. M. (2014). Open-source syringe pump library. PLoS ONE, 9(107216), 1–8. doi:10.1371/journal.pone.0107216 Google Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  • Mauricio Watanabe Ribeiro
    • 1
    • 2
    • 3
  • José Firmino Rodrigues Neto
    • 1
    • 2
  • Edgard Morya
    • 1
    • 2
  • Fabrício Lima Brasil
    • 1
    • 2
  • Mariana Ferreira Pereira de Araújo
    • 1
    • 2
  1. 1.Graduate Program in NeuroengineeringEdmond and Lily Safra International Institute of Neuroscience, Santos Dumont InstituteMacaibaBrazil
  2. 2.Alberto Santos Dumont Association for Research SupportMacaíbaBrazil
  3. 3.Hospital Israelita Albert EinsteinMorumbiBrazil

Personalised recommendations