Bayesian analysis of the piecewise diffusion decision model

Article

Abstract

Most past research on sequential sampling models of decision-making have assumed a time homogeneous process (i.e., parameters such as drift rates and boundaries are constant and do not change during the deliberation process). This has largely been due to the theoretical difficulty in testing and fitting more complex models. In recent years, the development of simulation-based modeling approaches matched with Bayesian fitting methodologies has opened the possibility of developing more complex models such as those with time-varying properties. In the present work, we discuss a piecewise variant of the well-studied diffusion decision model (termed pDDM) that allows evidence accumulation rates to change during the deliberation process. Given the complex, time-varying nature of this model, standard Bayesian parameter estimation methodologies cannot be used to fit the model. To overcome this, we apply a recently developed simulation-based, hierarchal Bayesian methodology called the probability density approximation (PDA) method. We provide an analysis of this methodology and present results of parameter recovery experiments to demonstrate the strengths and limitations of this approach. With those established, we fit pDDM to data from a perceptual experiment where information changes during the course of trials. This extensible modeling platform opens the possibility of applying sequential sampling models to a range of complex non-stationary decision tasks.

Keywords

Evidence accumulation models Non-stationary stimuli Hierarchal Bayesian inference 

Notes

Acknowledgments

WRH and JST were supported by National Science Foundation Grant SES-1556325.

References

  1. Apgar, J. F., Witmer, D. K., White, F. M., & Tidor, B. (2010). Sloppy models, parameter uncertainty, and the role of experimental design. Molecular BioSystems, 6(10), 1890–1900.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bröder, A., & Schiffer, S. (2006). Adaptive flexibility and maladaptive routines in selecting fast and frugal decision strategies. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(4), 904–918.PubMedGoogle Scholar
  3. Brown, S. D., Ratcliff, R., & Smith, P. L. (2006). Evaluating methods for approximating stochastic differential equations. Journal of Mathematical Psychology, 50(4), 402–410.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: A dynamic-cognitive approach to decision-making in an uncertain environment. Psychological Review, 100(3), 432–459.CrossRefPubMedGoogle Scholar
  5. Cisek, P., Puskas, G. A., & El-Murr, S. (2009). Decisions in changing conditions: The urgency-gating model. The Journal of Neuroscience, 29(37), 11560–11571.CrossRefPubMedGoogle Scholar
  6. Diederich, A. (1997). Dynamic stochastic models for decision-making under time constraints. Journal of Mathematical Psychology, 41(3), 260–274.CrossRefPubMedGoogle Scholar
  7. Diederich, A., & Busemeyer, J. R. (1999). Conflict and the stochastic-dominance principle of decision-making. Psychological Science, 10(4), 353–359.CrossRefGoogle Scholar
  8. Diederich, A., & Oswald, P. (2016). Multi-stage sequential sampling models with finite or infinite time horizon and variable boundaries. Journal of Mathematical Psychology, 74, 128–145.CrossRefGoogle Scholar
  9. Diederich, A., & Trueblood, J. (submitted). A dynamic dual process model of risky decision-making.Google Scholar
  10. Gold, J. I., & Shadlen, M. N. (2001). Neural computations that underlie decisions about sensory stimuli. Trends in Cognitive Sciences, 5(1), 10–16.CrossRefPubMedGoogle Scholar
  11. Guo, L., Trueblood, J. S., & Diederich, A. (2015). A dual-process model of framing effects in risky choice. In Noelle, D.C., & et al (Eds.), Proceedings of the 37th annual conference of the cognitive science society (pp. 836–841). Austin, TX: Cognitive Science Society.Google Scholar
  12. Gureckis, T. M., & Love, B. C. (2009). Learning in noise: Dynamic decision-making in a variable environment. Journal of Mathematical Psychology, 53(3), 180–193.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gutenkunst, R. N., Waterfall, J. J., Casey, F. P., Brown, K. S., Myers, C. R., & Sethna, J. P. (2007). Universally sloppy parameter sensitivities in systems biology models. PLoS Computational Biology, 3(10), e189.CrossRefPubMedCentralGoogle Scholar
  14. Higham, D. J. (2001). An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review, 43(3), 525–546.CrossRefGoogle Scholar
  15. Holmes, W. R. (2015). A practical guide to the probability density approximation (PDA) with improved implementation and error characterization. Journal of Mathematical Psychology, 68, 13–24.CrossRefGoogle Scholar
  16. Holmes, W. R., Trueblood, J. S., & Heathcote, A. (2016). A new framework for modeling decisions about changing information: The piecewise linear ballistic accumulator model. Cognitive Psychology, 85, 1–29.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Krajbich, I., & Rangel, A. (2011). Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions. Proceedings of the National Academy of Sciences, 108(33), 13852–13857.CrossRefGoogle Scholar
  18. Krajbich, I., Armel, C., & Rangel, A. (2010). Visual fixations and the computation and comparison of value in simple choice. Nature Neuroscience, 13(10), 1292–1298.CrossRefPubMedGoogle Scholar
  19. Logan, G. D., & Burkell, J. (1986). Dependence and independence in responding to double stimulation: A comparison of stop, change, and dual-task paradigms. Journal of Experimental Psychology: Human Perception and Performance, 12(4), 549–563.Google Scholar
  20. Matzke, D., & Wagenmakers, E.-J. (2009). Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis. Psychonomic Bulletin and Review, 16(5), 798–817.CrossRefPubMedGoogle Scholar
  21. Navarro, D. J., & Fuss, I. G. (2009). Fast and accurate calculations for first-passage times in Wiener diffusion models. Journal of Mathematical Psychology, 53(4), 222–230.CrossRefGoogle Scholar
  22. Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108.CrossRefGoogle Scholar
  23. Ratcliff, R. (1980). A note on modeling accumulation of information when the rate of accumulation changes over time. Journal of Mathematical Psychology, 21(2), 178–184.CrossRefGoogle Scholar
  24. Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20(4), 873–922.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ratcliff, R., Thapar, A., & McKoon, G. (2001). The effects of aging on reaction time in a signal detection task. Psychology and Aging, 16(2), 323–341.CrossRefPubMedGoogle Scholar
  26. Resulaj, A., Kiani, R., Wolpert, D. M., & Shadlen, M. N. (2009). Changes of mind in decision-making. Nature, 461(7261), 263–266.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Shadlen, M. N., & Newsome, W. T. (1996). Motion perception: Seeing and deciding. Proceedings of the National Academy of Sciences, 93(2), 628–633.CrossRefGoogle Scholar
  28. Silverman, B. W. (1982). Algorithm as 176: Kernel density estimation using the fast Fourier transform. Journal of the Royal Statistical Society. Series C (Applied Statistics), 31(1), 93–99.Google Scholar
  29. Silverman, B. W. (1986). Density estimation for statistics and data analysis (Vol. 26). CRC Press.Google Scholar
  30. Smith, P. L., & Ratcliff, R. (2004). Psychology and neurobiology of simple decisions. Trends in Neurosciences, 27(3), 161–168.CrossRefPubMedGoogle Scholar
  31. Srivastava, V., Feng, S. F., Cohen, J. D., Leonard, N. E., & Shenhav, A. (2017). A martingale analysis of first passage times of time-dependent Wiener diffusion models. Journal of Mathematical Psychology, 77, 94–110.CrossRefGoogle Scholar
  32. Ter Braak, C. J. (2006). A Markov chain Monte Carlo version of the genetic algorithm differential evolution: Easy Bayesian computing for real parameter spaces. Statistics and Computing, 16(3), 239–249.CrossRefGoogle Scholar
  33. Thura, D., Beauregard-Racine, J., Fradet, C.-W., & Cisek, P. (2012). Decision-making by urgency gating: Theory and experimental support. Journal of Neurophysiology, 108(11), 2912–2930.CrossRefPubMedGoogle Scholar
  34. Tsetsos, K., Gao, J., McClelland, J. L., & Usher, M. (2012). Using time-varying evidence to test models of decision dynamics: Bounded diffusion vs. the leaky competing accumulator model. Frontiers inNeuroscience, 6.Google Scholar
  35. Tsetsos, K., Usher, M., & McClelland, J. L. (2011). Testing multi-alternative decision models with non-stationary evidence. Frontiers in neuroscience, 5.Google Scholar
  36. Tuerlinckx, F. (2004). The efficient computation of the cumulative distribution and probability density functions in the diffusion model. Behavior Research Methods, Instruments, & Computers, 36(4), 702–716.CrossRefGoogle Scholar
  37. Turner, B. M., & Sederberg, P. B. (2014). A generalized, likelihood-free method for posterior estimation. Psychonomic Bulletin & Review, 21(2), 227–250.CrossRefGoogle Scholar
  38. Turner, B. M., Sederberg, P. B., Brown, S. D., & Steyvers, M. (2013). A method for efficiently sampling from distributions with correlated dimensions. Psychological Methods, 18(3), 368–384.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Turner, B. M., Sederberg, P. B., & McClelland, J. L. (2014). Bayesian analysis of simulation-based models. Journal of Mathematical Psychology, 72, 191–199.CrossRefGoogle Scholar
  40. Turner, B. M., Van Maanen, L., & Forstmann, B. U. (2015). Informing cognitive abstractions through neuroimaging: The neural drift diffusion model. Psychological Review, 122(2), 312–336.CrossRefPubMedGoogle Scholar
  41. Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: The leaky, competing accumulator model. Psychological Review, 108(3), 550–592.CrossRefPubMedGoogle Scholar
  42. Vandekerckhove, J., & Tuerlinckx, F. (2007). Fitting the Ratcliff diffusion model to experimental data. Psychonomic Bulletin & Review, 14(6), 1011–1026.CrossRefGoogle Scholar
  43. Vandekerckhove, J., & Tuerlinckx, F. (2008). Diffusion model analysis with MATLAB: A DMAT primer. Behavior Research Methods, 40(1), 61–72.CrossRefPubMedGoogle Scholar
  44. Vandekerckhove, J., Tuerlinckx, F., & Lee, M. D. (2011). Hierarchical diffusion models for two-choice response times. Psychological Methods, 16(1), 44–62.CrossRefPubMedGoogle Scholar
  45. Verbruggen, F., & Logan, G. D. (2008). Response inhibition in the stop-signal paradigm. Trends in Cognitive Sciences, 12(11), 418–424.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Voss, A., & Voss, J. (2007). Fast-dm: A free program for efficient diffusion model analysis. Behavior Research Methods, 39(4), 767–775.CrossRefPubMedGoogle Scholar
  47. Voss, A., & Voss, J. (2008). A fast numerical algorithm for the estimation of diffusion model parameters. Journal of Mathematical Psychology, 52(1), 1–9.CrossRefGoogle Scholar
  48. Wabersich, D., & Vandekerckhove, J. (2014). Extending jags: A tutorial on adding custom distributions to jags (with a diffusion model example). Behavior research methods, 46(1), 15–28.CrossRefPubMedGoogle Scholar
  49. White, C. N., Ratcliff, R., Vasey, M. W., & McKoon, G. (2010). Using diffusion models to understand clinical disorders. Journal of Mathematical Psychology, 54(1), 39–52.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM: Hierarchical Bayesian estimation of the drift-diffusion model in Python. Frontiers in Neuroinformatics, 7, 14.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  1. 1.Department of Physics and AstronomyVanderbilt UniversityNashvilleUSA
  2. 2.Department of PsychologyVanderbilt UniversityNashvilleUSA

Personalised recommendations