Arnseth, H. C., & Ludvigsen, S. (2006). Approaching institutional contexts: Systemic versus dialogic research in CSCL. International Journal of Computer-Supported Collaborative Learning, 1, 167–185.
Article
Google Scholar
Bakhtin, M. M. (1981). The dialogic imagination: Four essays (C. Emerson & M. Holquist, Trans.). Austin, TX: University of Texas Press.
Bakhtin, M. M. (1984). Problems of Dostoevsky’s poetics (C. Emerson, Trans. C. Emerson Ed.). Minneapolis, MN: University of Minnesota Press.
Barab, S. A., Hay, K. E., & Yamagata-Lynch, L. C. (2001). Constructing Networks of Action-Relevant Episodes: An In Situ Research Methodology. Journal of the Learning Sciences, 10, 63–112. doi:10.1207/S15327809JLS10-1-2_5
Article
Google Scholar
Barabási, A. L. (2016). Network Science. Cambridge, UK: Cambridge University Press.
Google Scholar
Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks. In International AAAI Conference on Weblogs and Social Media (pp. 361–362). San Jose, CA: AAAI Press.
Bereiter, C. (2002). Education and mind in the knowledge age. Mahwah, NJ: Erlbaum.
Google Scholar
Berry, M. W., Drmac, Z., & Jessup, E. R. (1999). Matrices, vector spaces, and information retrieval. SIAM Review, 41, 335–362.
Article
Google Scholar
Blei, D. M., & Lafferty, J. (2009). Topic Models. In A. Srivastava & M. Sahami (Eds.), Text mining: Classification, clustering, and applications (pp. 71–93). London, UK: Chapman & Hall/CRC.
Google Scholar
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 993–1022.
Google Scholar
Budanitsky, A., & Hirst, G. (2006). Evaluating WordNet-based measures of lexical semantic relatedness. Computational Linguistics, 32, 13–47.
Article
Google Scholar
Cassirer, E. (1953). The philosophy of symbolic forms (Vol. 1). New Haven, CT: Yale University Press.
Google Scholar
Cha, S. H. (2007). Comprehensive survey on distance/similarity measures between probability density functions. International Journal of Mathematical Models and Methods in Applied Sciences, 1, 300–307.
Google Scholar
Collier, W., Ruis, A., & Shaffer, D. W. (2016). Local versus global connection making in discourse. In 426–433 (Ed.), 12th International Conerence. on Learning Sciences (ICLS 2016). Singapore: International Society of the Learning Sciences (ISLS).
Cress, U. (2013). Mass collaboration and learning. In R. Luckin, S. Puntambekar, P. Goodyear, B. Grabowski, J. Underwood, & N. Winters (Eds.), Handbook of design in educational technology (pp. 416–424). New York, NY: Routledge.
Google Scholar
Dascalu, M. (2014). Analyzing discourse and text complexity for learning and collaborating (Studies in Computational Intelligence, Vol. 534). Berlin, Germany: Springer.
Dascalu, M., Chioasca, E. V., & Trausan-Matu, S. (2008). ASAP—An Advanced System for Assessing Chat Participants. In D. Dochev, M. Pistore, & P. Traverso (Eds.), 13th International Conference on Artificial Intelligence: Methodology, systems, and applications (AIMSA 2008) (pp. 58–68). Berlin, Germany: Springer.
Chapter
Google Scholar
Dascalu, M., Trausan-Matu, S., & Dessus, P. (2013). Cohesion-based analysis of CSCL conversations: Holistic and individual perspectives. In N. Rummel, M. Kapur, M. Nathan, & S. Puntambekar (Eds.), 10th International Conference on Computer-Supported Collaborative Learning (CSCL 2013) (pp. 145–152). Madison, USA: ISLS.
Google Scholar
Dascalu, M., Trausan-Matu, S., & Dessus, P. (2014). Validating the automated assessment of participation and of collaboration in chat conversations. In S. Trausan-Matu, K. E. Boyer, M. Crosby, & K. Panourgia (Eds.), 12th International Conference on Intelligent Tutoring Systems (ITS 2014) (pp. 230–235). Honolulu, USA: Springer.
Google Scholar
Dascalu, M., Trausan-Matu, S., McNamara, D. S., & Dessus, P. (2015). ReaderBench—Automated Evaluation of Collaboration on the basis of Cohesion and Dialogism. International Journal of Computer-Supported Collaborative Learning, 10, 395–423. doi:10.1007/s11412-015-9226-y
Article
Google Scholar
Dascalu, M., Stavarache, L. L., Dessus, P., Trausan-Matu, S., McNamara, D. S., & Bianco, M. (2015). ReaderBench: The learning companion. In 17th International Conference on Artificial Intelligence in Education (AIED 2015) (pp. 915–916). Madrid, Spain: Springer.
Google Scholar
Dascalu, M., Trausan-Matu, S., Dessus, P., & McNamara, D. S. (2015a). Dialogism: A framework for CSCL and a signature of collaboration. In O. Lindwall, P. Häkkinen, T. Koschmann, P. Tchounikine, & S. Ludvigsen (Eds.), 11th International Conference on Computer-Supported Collaborative Learning (CSCL 2015) (pp. 86–93). Gothenburg, Sweden: ISLS.
Google Scholar
Dascalu, M., Stavarache, L. L., Trausan-Matu, S., Dessus, P., Bianco, M., & McNamara, D. S. (2015b). ReaderBench: An integrated tool supporting both individual and collaborative learning. In 5th International Learning Analytics & Knowledge Conference (LAK’15) (pp. 436–437). New York, NY: ACM.
Dascalu, M., Trausan-Matu, S., Dessus, P., & McNamara, D. S. (2015b). Discourse cohesion: A signature of collaboration. In 5th International Learning Analytics & Knowledge Conference (LAK’15) (pp. 350–354). Poughkeepsie, NY: ACM.
Google Scholar
Deerwester, S., Dumais, S. T., Furnas, G. W., Harshman, R., Landauer, T. K., Lochbaum, K., & Streeter, L. (1989). USA Patent No. 4,839,853. 4,839,853: USPTO.
Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by Latent Semantic Analysis. Journal of the American Society for Information Science, 41, 391–407.
Article
Google Scholar
Dillenbourg, P. (2002). Over-scripting CSCL: The risks of blending collaborative learning with instructional design. In P. A. Kirschner (Ed.), Three worlds of CSCL: Can we support CSCL? (pp. 61–91). Heerlen, The Netherlands: Open Universiteit Nederland.
Google Scholar
Dumais, S. T. (2004). Latent semantic analysis. Annual Review of Information Science and Technology, 38, 188–230.
Article
Google Scholar
Golub, G. H., & Reinsch, C. (1970). Singular value decomposition and least squares solutions. Numerische Mathematik, 14, 403–420.
Article
Google Scholar
Griffiths, T. (2002). Gibbs sampling in the generative model of latent Dirichlet allocation. Stanford, CA: Stanford University.
Google Scholar
Grosz, B. J., Weinstein, S., & Joshi, A. K. (1995). Centering: A framework for modeling the local coherence of discourse. Computational Linguistics, 21, 203–225.
Google Scholar
Halliday, M. A. K., & Hasan, R. (1976). Cohesion In English. London, UK: Longman.
Google Scholar
Heinrich, G. (2008). Parameter estimation for text analysis. Leipzig, Germany: vsonix GmbH + University of Leipzig.
Google Scholar
Hoadley, C. P. (2002). Creating context: Design-based research in creating and understanding CSCL. Paper presented at the International Conference on Computer Support for Collaborative Learning: Foundations for a CSCL Community, Boulder, Colorado.
Hobbs, J. R. (1978). Why is discourse coherent? Menlo Park, California: SRI International.
Google Scholar
Hobbs, J. R. (1979). Coherence and coreference. Cognitive Science, 3, 67–90.
Article
Google Scholar
Hobbs, J. R. (1985). On the coherence and structure of discourse. Center for the Study of Language and Information: Stanford University.
Hobbs, J. R. (1990). Topic drift. In B. Dorval (Ed.), Conversational organization and its development (pp. 3–22). Norwood, NJ: Ablex.
Google Scholar
Holmer, T., Kienle, A., & Wessner, M. (2006). Explicit Referencing in Learning Chats: Needs and Acceptance. In W. Nejdl & K. Tochtermann (Eds.), Innovative approaches for learning and knowledge sharing: First European Conference on Technology Enhanced Learning, EC-TEL 2006 (pp. 170–184). Crete, Greece: Springer.
Chapter
Google Scholar
Jessup, E. R., & Martin, J. H. (2001). Taking a new look at the Latent Semantic Analysis approach to information retrieval. In M. W. Berry (Ed.), Computational information retrieval (pp. 121–144). Philadelphia, PA: SIAM.
Google Scholar
Joshi, M., & Rosé, C. P. (2007). Using transactivity in conversation summarization in educational dialog. Paper presented at the SLaTE Workshop on Speech and Language Technology in Education, Farmington, Pennsylvania, USA.
Jurafsky, D., & Martin, J. H. (2009). An introduction to Natural Language Processing. Computational linguistics, and speech recognition (2nd ed.). London, UK: Pearson Prentice Hall.
Google Scholar
Koschmann, T. (1999). Toward a dialogic theory of learning: Bakhtin’s contribution to understanding learning in settings of collaboration. In C. M. Hoadley & J. Roschelle (Eds.), International Conference on Computer Support for Collaborative Learning (CSCL’99) (pp. 308–313). Palo Alto: ISLS.
Google Scholar
Kotz, S., Balakrishnan, N., & Johnson, N. L. (2000). Dirichlet and inverted Dirichlet distributions. In Continuous multivariate distributions: Vol. 1: Models and applications (2nd ed., pp. 485–527). New York, NY: Wiley.
Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22, 79–86.
Article
Google Scholar
Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104, 211–240. doi:10.1037/0033-295X.104.2.211
Article
Google Scholar
Landauer, T. K., & Dumais, S. (2008). Latent semantic analysis. Scholarpedia, 3, 4356.
Article
Google Scholar
Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic analysis. Discourse Processes, 25, 259–284. doi:10.1080/01638539809545028
Article
Google Scholar
Landauer, T. K., Laham, D., & Foltz, P. W. (1998). Learning human-like knowledge by singular value decomposition: A progress report. In M. I. Jordan, M. J. Kearns, & S. A. Solla (Eds.), Advances in Neural Information Processing Systems (Vol. 10, pp. 45–51). Cambridge, MA: MIT Press.
Google Scholar
Landauer, T. K., McNamara, D. S., Dennis, S., & Kintsch, W. (Eds.). (2007). Handbook of latent semantic analysis. Mahwah, NJ: Erlbaum.
Google Scholar
Lehtinen, E. (2003). Computer-supported collaborative learning: An approach to powerful learning environments. In E. De Corte, L. Verschaffel, N. Entwistle, & J. Van Merriëboer (Eds.), Powerful learning environments: Unravelling basic components and dimensions (pp. 35–54). Amsterdam, The Netherlands: Elsevier.
Google Scholar
Lemaire, B. (2009). Limites de la lemmatisation pour l’extraction de significations. In 9es Journées Internationales d’Analyse Statistique des Données Textuelles (JADT 2009) (pp. 725–732). Lyon, France: Presses Universitaires de Lyon.
Linell, P. (2009). Rethinking language, mind, and world dialogically: Interactional and contextual theories of human sense-making. Charlotte, NC: Information Age.
Google Scholar
Lizza, M., & Sartoretto, F. (2001). A comparative analysis of LSI strategies. In M. W. Berry (Ed.), Computational information retrieval (pp. 171–181). Philadelphia, PA: SIAM.
Google Scholar
Mann, W. C., & Thompson, S. A. (1987). Rhetorical structure theory: A theory of text organization. Marina del Rey, CA: Information Sciences Institute.
Google Scholar
Manning, C. D., & Schütze, H. (1999). Foundations of statistical natural language processing. Cambridge, MA: MIT Press.
Google Scholar
Marková, I., Linell, P., Grossen, M., & Salazar Orvig, A. (2007). Dialogue in focus groups: Exploring socially shared knowledge. London, UK: Equinox.
Google Scholar
McNamara, D. S., Louwerse, M. M., McCarthy, P. M., & Graesser, A. C. (2010). Coh-Metrix: Capturing linguistic features of cohesion. Discourse Processes, 47, 292–330.
Article
Google Scholar
McNamara, D. S., Graesser, A. C., McCarthy, P., & Cai, Z. (2014). Automated evaluation of text and discourse with Coh-Metrix. Cambridge, UK: Cambridge University Press.
Book
Google Scholar
Medina, R., & Suthers, D. (2009). Using a contingency graph to discover representational practices in an online collaborative environment. Research and Practice in Technology Enhanced Learning, 4, 281–305.
Article
Google Scholar
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representation in vector space. In Workshop at ICLR. Scottsdale, AZ.
Newman, M. E. J. (2010). Networks: An introduction (1st ed.). Oxford, UK: Oxford University Press.
Book
Google Scholar
Nistor, N., Baltes, B., Dascalu, M., Mihaila, D., Smeaton, G., & Trausan-Matu, S. (2014). Participation in virtual academic communities of practice under the influence of technology acceptance and community factors. A learning analytics application. Computers in Human Behavior, 34, 339–344. doi:10.1016/j.chb.2013.10.051
Article
Google Scholar
Nistor, N., Trausan-Matu, S., Dascalu, M., Duttweiler, H., Chiru, C., Baltes, B., & Smeaton, G. (2015). Finding student-centered open learning environments on the internet: Automated dialogue assessment in academic virtual communities of practice. Computers in Human Behavior, 47, 119–127. doi:10.1016/j.chb.2014.07.029
Article
Google Scholar
Nistor, N., Dascalu, M., & Trausan-Matu, S. (2016). Newcomer integration in online knowledge communities: Exploring the role of dialogic textual complexity. In 12th Int. Conf. on Learning Sciences (ICLS 2016) (pp. 914–917). Singapore: International Society of the Learning Sciences (ISLS).
Rebedea, T. (2012). Computer-based support and feedback for collaborative chat conversations and discussion forums (Doctoral dissertation). University Politehnica of Bucharest, Bucharest, Romania.
Rebedea, T., Dascalu, M., Trausan-Matu, S., Banica, D., Gartner, A., Chiru, C. G., & Mihaila, D. (2010). Overview and preliminary results of using PolyCAFe for collaboration analysis and feedback generation. In M. Wolpers, P. Kirschner, M. Scheffel, S. Lindstaedt, & V. Dimitrova (Eds.), Sustaining TEL: From innovation to learning and practice: 5th European Conference on Technology Enhanced Learning (EC-TEL 2010) (pp. 420–425). Barcelona, Spain: Springer.
Chapter
Google Scholar
Rishel, T., Perkins, A. L., Yenduri, S., & Zand, F. (2006). Augmentation of a term/document matrix with part-of-speech tags to improve accuracy of latent semantic analysis. In 5th WSEAS International Conference on Applied Computer Science (pp. 573–578). Hangzhou, China.
Roschelle, J., & Teasley, S. (1995). The construction of shared knowledge in collaborative problem solving. In C. O’Malley (Ed.), Computer-Supported Collaborative Learning. New York, NY: Springer.
Google Scholar
Rosé, C. P., Wang, Y. C., Cui, Y., Arguello, J., Stegmann, K., Weinberger, A., & Fischer, F. (2008). Analyzing collaborative learning processes automatically: Exploiting the advances of computational linguistics in computer-supported collaborative learning. International Journal of Computer Supported Collaborative Learning, 3, 237–271.
Article
Google Scholar
Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31, 581–603.
Article
PubMed
Google Scholar
Salomon, G., & Globerson, T. (1989). When teams do not function the way they ought to. International Journal of Educational Research, 13, 89–100.
Article
Google Scholar
Scardamalia, M., & Bereiter, C. (2006). Knowledge building: Theory, pedagogy, and technology. In K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 97–118). New York, NY: Cambridge University Press.
Google Scholar
Searle, J. (1969). Speech acts: An essay in the philosophy of language. Cambridge, UK: Cambridge University Press.
Book
Google Scholar
Shaffer, D. W., Hatfield, D., Svarovsky, G. N., Nash, P., Nulty, A., Bagley, E.,…Mislevy, R. (2009). Epistemic network analysis: A prototype for 21st-century assessment of learning. IJLM, 1, 33–53.
Stahl, G. (2006). Group cognition. Computer support for building collaborative knowledge. Cambridge, MA: MIT Press.
Google Scholar
Stahl, G. (2009). Studying virtual math teams. New York, NY: Springer.
Book
Google Scholar
Stahl, G., Koschmann, T., & Suthers, D. (2006). Computer-supported collaborative learning: An historical perspective. In R. K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 409–426). Cambridge, UK: Cambridge University Press.
Google Scholar
Stahl, G., Cress, U., Ludvigsen, S., & Law, N. (2014). Dialogic foundations of CSCL. International Journal of Computer-Supported Collaborative Learning, 9, 117.
Article
Google Scholar
Stolcke, A., Ries, K., Coccaro, N., Shriberg, J., Bates, R., Jurafsky, D.,…Meteer, M. (2000). Dialogue act modeling for automatic tagging and recognition of conversational speech. Computational Linguistics, 26, 339–373.
Suthers, D. (2015). From contingencies to network-level phenomena: Multilevel analysis of activity and actors in heterogeneous networked learning environments. In 5th International Learning Analytics & Knowledge Conference (LAK’15) (pp. 368–377). Poughkeepsie, NY: ACM.
Suthers, D., & Desiato, C. (2012). Exposing chat features through analysis of uptake between contributions. In 45th Hawaii International Conference on System Sciences (pp. 3368–3377). Piscataway, NJ: IEEE Press.
Google Scholar
Suthers, D., & Rosen, D. (2011). A unified framework for multi-level analysis of distributed learning. In 1st International Learning Analytics & Knowledge Conference (LAK’11) (pp. 64–74). New York, NY: ACM.
Teh, Y. W., Jordan, M. I., Beal, M. J., & Blei, D. M. (2006). Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101, 1566–1581.
Article
Google Scholar
Trausan-Matu, S. (2010a). Automatic support for the analysis of online collaborative learning chat conversations. In P. M. Tsang, S. K. S. Cheung, V. S. K. Lee, & R. Huang (Eds.), 3rd International Conference on Hybrid Learning (pp. 383–394). Berlin, Germany: Springer.
Chapter
Google Scholar
Trausan-Matu, S. (2010b). The polyphonic model of hybrid and collaborative learning. In F. Wang, L. J. Fong, & R. C. Kwan (Eds.), Handbook of research on hybrid learning models: Advanced tools, technologies, and applications (pp. 466–486). Hershey, NY: Information Science.
Chapter
Google Scholar
Trausan-Matu, S., & Rebedea, T. (2009). Polyphonic inter-animation of voices in VMT. In G. Stahl (Ed.), Studying virtual math teams (pp. 451–473). New York, NY: Springer.
Chapter
Google Scholar
Trausan-Matu, S., & Rebedea, T. (2010). A polyphonic model and system for inter-animation analysis in chat conversations with multiple participants. In A. F. Gelbukh (Ed.), 11th International Conference on Computational Linguistics and Intelligent Text Processing (CICLing 2010) (pp. 354–363). New York, NY: Springer.
Chapter
Google Scholar
Trausan-Matu, S., Stahl, G., & Zemel, A. (2005). Polyphonic inter-animation in collaborative problem solving chats. Philadelphia, PA: Drexel University.
Google Scholar
Trausan-Matu, S., Rebedea, T., Dragan, A., & Alexandru, C. (2007). Visualisation of learners’ contributions in chat conversations. In J. Fong & F. L. Wang (Eds.), Blended learning (pp. 217–226). Singapore: Pearson/Prentice Hall.
Google Scholar
Trausan-Matu, S., Stahl, G., & Sarmiento, J. (2007). Supporting polyphonic collaborative learning. E-Service Journal, 6, 58–74.
Article
Google Scholar
Trausan-Matu, S., Rebedea, T., & Dascalu, M. (2010). Analysis of discourse in collaborative learning chat conversations with multiple participants. In D. Tufis & C. Forascu (Eds.), Multilinguality and interoperability in language processing with emphasis on Romanian (pp. 313–330). Bucharest, Romania: Editura Academiei.
Google Scholar
Trausan-Matu, S., Dascalu, M., & Dessus, P. (2012). Textual complexity and discourse structure in Computer-Supported Collaborative Learning. In S. A. Cerri, W. J. Clancey, G. Papadourakis, & K. Panourgia (Eds.), 11th International Conference on Intelligent Tutoring Systems (ITS 2012) (pp. 352–357). Chania, Grece: Springer.
Google Scholar
Trausan-Matu, S., Dascalu, M., & Rebedea, T. (2014). PolyCAFe—Automatic support for the polyphonic analysis of CSCL chats. International Journal of Computer-Supported Collaborative Learning, 9, 127–156. doi:10.1007/s11412-014-9190-y
Article
Google Scholar
Vygotsky, L. S. (1978). Mind in society. Cambridge, MA: Harvard University Press.
Google Scholar
Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge, UK: Cambridge University Press.
Book
Google Scholar
Wegerif, R. (2005). A dialogical understanding of the relationship between CSCL and teaching thinking skills. In T. Koschmann, D. Suthers, & T. W. Chan (Eds.), Conference on Computer Supported Collaborative Learning 2005 (CSCL’05): The next 10 years! (p. 7). Taipei, Taiwan: ISLS.
Google Scholar
Wertsch, J. (1998). Mind as action. Oxford, UK: Oxford University Press.
Google Scholar
Wiemer-Hastings, P., & Zipitria, I. (2001). Rules for syntax, vectors for semantics. In Proceedings of the Twenty-Third Annual Conference of the Cognitive Science Society (pp. 1112–1117). Mahwah, NJ: Erlbaum.
Google Scholar
Wu, Z., & Palmer, M. (1994). Verb semantics and lexical selection. In 32nd Annual Meeting of the Association for Computational Linguistics, ACL ’94 (pp. 133–138). New York, NY: ACL.