Behavior Research Methods

, Volume 50, Issue 1, pp 182–194 | Cite as

A flexible and accurate method to estimate the mode and stability of spontaneous coordinated behaviors: The index-of-stability (IS) analysis

  • Gregory Zelic
  • Deborah Varoqui
  • Jeesun Kim
  • Chris Davis
Article

Abstract

Patterns of coordination result from the interaction between (at least) two oscillatory components. This interaction is typically understood by means of two variables: the mode that expresses the shape of the interaction, and the stability that is the robustness of the interaction in this mode. A potent method of investigating coordinated behaviors is to examine the extent to which patterns of coordination arise spontaneously. However, a prominent issue faced by researchers is that, to date, no standard methods exist to fairly assess the stability of spontaneous coordination. In the present study, we introduce a new method called the index-of-stability (IS) analysis. We developed this method from the phase-coupling (PC) analysis that has been traditionally used for examining locomotion–respiration coordinated systems. We compared the extents to which both methods estimate the stability of simulated coordinated behaviors. Computer-generated time series were used to simulate the coordination of two rhythmic components according to a selected mode m:n and a selected degree of stability. The IS analysis was superior to the PC analysis in estimating the stability of spontaneous coordinated behaviors, in three ways: First, the estimation of stability itself was found to be more accurate and more reliable with the IS analysis. Second, the IS analysis is not constrained by the limitations of the PC analysis. Third and last, the IS analysis offers more flexibility, and so can be adapted according to the user’s needs.

Keywords

Spontaneous entrainment Frequency-locking Phase-coupling Stability Method 

Supplementary material

13428_2017_861_MOESM1_ESM.docx (33 kb)
S1 Appendix The phase-coupling (PC) analysis. (DOCX 32 kb)
13428_2017_861_MOESM2_ESM.docx (24 kb)
S2 Appendix Limitations of the PC analysis. (DOCX 24 kb)
13428_2017_861_MOESM3_ESM.docx (26 kb)
S3 Appendix The index-of-stability (IS) analysis. (DOCX 26 kb)
13428_2017_861_MOESM4_ESM.docx (24 kb)
S4 Appendix The circle map model. (DOCX 23 kb)
13428_2017_861_MOESM5_ESM.docx (62 kb)
S5 Appendix MATLAB scripts/functions. (DOCX 62 kb)

References

  1. Bak, P., Bohr, T., & Jensen, M. H. (1985). Mode-locking and the transition to chaos in dissipative systems. Physica Scripta, 1985, 50–58.CrossRefGoogle Scholar
  2. Beek, P. J., Peper, C. E., & van Wieringen, P. C. W. (1992). Frequency locking, frequency modulation, and bifurcations in dynamic movement systems. In Tutorials in motor behavior II (pp. 599–622). Amsterdam, The Netherlands: Elsevier.Google Scholar
  3. Bramble, D. M., & Carrier, D. R. (1983). Running and breathing in mammals. Science, 219, 251–256.CrossRefPubMedGoogle Scholar
  4. Cvitanovic, P., Shraiman, B., & Söderberg, B. (1985). Scaling laws for mode lockings in circle maps. Physica Scripta, 32, 263–270.CrossRefGoogle Scholar
  5. Fisher, N. I. (1995). Statistical analysis of circular data. Cambridge, UK: Cambridge University Press.Google Scholar
  6. Guevara, M. R., & Glass, L. (1982). Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: A theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias. Journal of Mathematical Biology, 14, 1–23.CrossRefPubMedGoogle Scholar
  7. Haken, H. (2013). Synergetics: Introduction and advanced topics. New York, NY: Springer Science & Business Media.Google Scholar
  8. Haken, H., Kelso, J. S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51, 347–356.CrossRefPubMedGoogle Scholar
  9. Hamill, J., McDermott, W. J., & Haddad, J. M. (2000). Issues in quantifying variability from a dynamical systems perspective. Journal of Applied Biomechanics, 16, 407–418.CrossRefGoogle Scholar
  10. Hardy, G. H., & Wright, E. M. (1979). An introduction to the theory of numbers. Oxford, UK: Oxford University Press.Google Scholar
  11. Hoffmann, C. P., Torregrosa, G., & Bardy, B. G. (2012). Sound stabilizes locomotor–respiratory coupling and reduces energy cost. PLoS ONE, 7, e45206. doi: 10.1371/journal.pone.0045206 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Jammalamadaka, S. R., & Sengupta, A. (2001). Topics in circular statistics. River Edge, NJ: World Scientific.CrossRefGoogle Scholar
  13. Jensen, M. H., Bak, P., & Bohr, T. (1984). Transition to chaos by interaction of resonances in dissipative systems: I. Circle maps. Physical Review A, 30, 1960–1969.CrossRefGoogle Scholar
  14. Kelso, J. A. S. (1991). Multifrequency behavioral patterns and the phase attractive circle map. Biological Cybernetics, 64, 485–495.CrossRefPubMedGoogle Scholar
  15. Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behavior. Cambridge, MA: MIT Press.Google Scholar
  16. Kelso, J. A. S., & de Guzman, G. C. (1988). Order in time: How the cooperation between the hands informs the design of the brain. In Neural and synergetic computers (pp. 180–196). Berlin, Germany: Springer.CrossRefGoogle Scholar
  17. Kelso, J. A. S., & Jeka, J. J. (1992). Symmetry breaking dynamics of human multilimb coordination. Journal of Experimental Psychology: Human Perception and Performance, 18, 645–668. doi: 10.1037/0096-1523.18.3.645 PubMedGoogle Scholar
  18. Kelso, J. A. S., DeGuzman, G. C., & Holroyd, T. (1991). Synergetic dynamics of biological coordination with special reference to phase attraction and intermittency. In H. P. Koepchen & H. Haken (Eds.), Rhythms in physiological systems (pp. 195–213). Berlin, Germany: Springer.CrossRefGoogle Scholar
  19. Kelso, J. A. S., de Guzman, G. C., Reveley, C., & Tognoli, E. (2009). Virtual partner interaction (VPI): Exploring novel behaviors via coordination dynamics. PLoS ONE, 4, e5749. doi: 10.1371/journal.pone.0005749 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kiefer, A. W., Riley, M. A., Shockley, K., Villard, S., & Van Orden, G. C. (2009). Walking changes the dynamics of cognitive estimates of time intervals. Journal of Experimental Psychology: Human Perception and Performance, 35, 1532–1541.PubMedGoogle Scholar
  21. Lagarde, J. (2013). Challenges for the understanding of the dynamics of social coordination. Frontiers in Neurorobotics, 7, 18. doi: 10.3389/fnbot.2013.0001 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lagarde, J., Zelic, G., & Mottet, D. (2012). Segregated audio–tactile events destabilize the bimanual coordination of distinct rhythms. Experimental Brain Research, 219, 409–419. doi: 10.1007/s00221-012-3103-y CrossRefPubMedGoogle Scholar
  23. McDermott, W. J., Van Emmerik, R. E., & Hamill, J. (2003). Running training and adaptive strategies of locomotor-respiratory coordination. European Journal of Applied Physiology, 89, 435–444.CrossRefPubMedGoogle Scholar
  24. Nourrit-Lucas, D., Zelic, G., Deschamps, T., Hilpron, M., & Delignières, D. (2013). Persistent coordination patterns in a complex task after 10 years delay: subtitle: How validate the old saying “once you have learned how to ride a bicycle, you never forget!”. Human Movement Science, 32, 1365–1378. doi: 10.1016/j.humov.2013.07.005 CrossRefPubMedGoogle Scholar
  25. O’Halloran, J., Hamill, J., McDermott, W. J., Remelius, J. G., & Van Emmerik, R. E. (2012). Locomotor–respiratory coupling patterns and oxygen consumption during walking above and below preferred stride frequency. European Journal of Applied Physiology, 112, 929–940.CrossRefPubMedGoogle Scholar
  26. Peper, C. E., Beek, P. J., & Van Wieringen, P. C. W. (1991). Bifurcations in polyrhythmic tapping: in search of Farey principles. In Tutorials in motor neuroscience (pp. 413–431). Amsterdam, The Netherlands: Springer.CrossRefGoogle Scholar
  27. Peper, C. L. E., Beek, P. J., & van Wieringen, P. C. (1995). Frequency-induced phase transitions in bimanual tapping. Biological Cybernetics, 73, 301–309.CrossRefPubMedGoogle Scholar
  28. Pikovsky, A., Rosenblum, M., & Kurths, J. (2003). Synchronization: A universal concept in nonlinear sciences (Vol. 12). Cambridge, UK: Cambridge University Press.Google Scholar
  29. Repp, B. H., & Su, Y. H. (2013). Sensorimotor synchronization: A review of recent research (2006–2012). Psychonomic Bulletin & Review, 20, 403–452. doi: 10.3758/s13423-012-0371-2 CrossRefGoogle Scholar
  30. Shockley, K., Baker, A. A., Richardson, M. J., & Fowler, C. A. (2007). Articulatory constraints on interpersonal postural coordination. Journal of Experimental Psychology: Human Perception and Performance, 33, 201–208. doi: 10.1037/0096-1523.33.1.201 PubMedGoogle Scholar
  31. Sternad, D., Turvey, M. T., & Saltzman, E. L. (1999). Dynamics of 1:2 coordination: Generalizing relative phase to n:m rhythms. Journal of Motor Behavior, 31, 207–223.CrossRefPubMedGoogle Scholar
  32. Tass, P., Rosenblum, M. G., Weule, J., Kurths, J., Pikovsky, A., Volkmann, J., … Freund, H. J. (1998). Detection of n: m phase locking from noisy data: application to magnetoencephalography. Physical Review Letters, 81, 3291–3294.Google Scholar
  33. Treffner, P. J., & Turvey, M. T. (1993). Resonance constraints on rhythmic movement. Journal of Experimental Psychology: Human Perception and Performance, 19, 1221–1237. doi: 10.1037/0096-1523.19.6.1221 Google Scholar
  34. Turvey, M. T. (1990). Coordination. American Psychologist, 45, 938–953.CrossRefPubMedGoogle Scholar
  35. Van Emmerik, R. E., Rosenstein, M. T., McDermott, W. J., & Hamill, J. (2004). A nonlinear dynamics approach to human movement. Journal of Applied Biomechanics, 20, 396–420.CrossRefGoogle Scholar
  36. Varlet, M., Marin, L., Lagarde, J., & Bardy, B. G. (2011). Social postural coordination. Journal of Experimental Psychology: Human Perception and Performance, 37, 473–483.PubMedGoogle Scholar
  37. Villard, S., Casties, J. F., & Mottet, D. (2005). Dynamic stability of locomotor respiratory coupling during cycling in humans. Neuroscience Letters, 383, 333–338.CrossRefPubMedGoogle Scholar
  38. Zelic, G., Mottet, D., & Lagarde, J. (2012). Behavioral impact of unisensory and multisensory audio-tactile events: Pros and cons for interlimb coordination in juggling. PLoS ONE, 7, e32308. doi: 10.1371/journal.pone.0032308 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zelic, G., Kim, J., & Davis, C. (2015). Articulatory constraints on spontaneous entrainment between speech and manual gesture. Human Movement Science, 42, 232–245.CrossRefPubMedGoogle Scholar
  40. Zelic, G., Mottet, D., & Lagarde, J. (2016). Perceptuo-motor compatibility governs multisensory integration in bimanual coordination dynamics. Experimental Brain Research, 234, 463–474. doi: 10.1007/s00221-015-4476-5 CrossRefPubMedGoogle Scholar
  41. Zelic, G., Varlet, M., Kim, J., & Davis, C. (2016). Influence of pacer continuity on continuous and discontinuous visuo-motor synchronisation. Acta Psychologica, 169, 61–70.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  • Gregory Zelic
    • 1
  • Deborah Varoqui
    • 2
  • Jeesun Kim
    • 1
  • Chris Davis
    • 1
  1. 1.The MARCS InstituteWestern Sydney UniversitySydneyAustralia
  2. 2.EuromovUniversity of MontpellierMontpellierFrance

Personalised recommendations