Introduction and application of the multiscale coefficient of variation analysis

  • Drew H. Abney
  • Christopher T. Kello
  • Ramesh Balasubramaniam


Quantifying how patterns of behavior relate across multiple levels of measurement typically requires long time series for reliable parameter estimation. We describe a novel analysis that estimates patterns of variability across multiple scales of analysis suitable for time series of short duration. The multiscale coefficient of variation (MSCV) measures the distance between local coefficient of variation estimates within particular time windows and the overall coefficient of variation across all time samples. We first describe the MSCV analysis and provide an example analytical protocol with corresponding MATLAB implementation and code. Next, we present a simulation study testing the new analysis using time series generated by ARFIMA models that span white noise, short-term and long-term correlations. The MSCV analysis was observed to be sensitive to specific parameters of ARFIMA models varying in the type of temporal structure and time series length. We then apply the MSCV analysis to short time series of speech phrases and musical themes to show commonalities in multiscale structure. The simulation and application studies provide evidence that the MSCV analysis can discriminate between time series varying in multiscale structure and length.


Multiscale analysis Variability Temporal structure Speech Music 


  1. Abercrombie, D. (1967). Elements of general phonetics (p. 97). Chicago, IL: Aldine.Google Scholar
  2. Abney, D. H., Kello, C. T., & Warlaumont, A. S. (2015). Production and convergence of multiscale clustering in speech. Ecological Psychology, 27(3), 222–235.CrossRefGoogle Scholar
  3. Abney, D. H., Paxton, A., Dale, R., & Kello, C. T. (2014). Complexity matching in dyadic conversation. Journal of Experimental Psychology: General, 143(6), 2304.CrossRefGoogle Scholar
  4. Altmann, E. G., Cristadoro, G., & Degli Esposti, M. (2012). On the origin of long-range correlations in texts. Proceedings of the National Academy of Sciences, 109(29), 11582–11587.CrossRefGoogle Scholar
  5. Bassingthwaighte, J. B., Liebovitch, L. S., & Bruce, J. (1994). West. Fractal physiology (Methods in physiology 2 an American physiological society book). An American physiological society book, illustrated edition edition.Google Scholar
  6. Coath, M., Denham, S. L., Smith, L., Honing, H., Hazan, A., Holonowicz, P., & Purwins, H. (2009). Model cortical responses for the detection of perceptual onsets and beat tracking in singing. Connection Science, 21(2-3), 193–205.CrossRefGoogle Scholar
  7. Coath, M., Denham, S. L., Smith, L., Honing, H., Hazan, A., Holonwicz, P., & Purwins, H. (2007). An auditory model for the detection of perceptual onsets and beat tracking in singing. Neural information processing systems, workshop on music processing in the brain.Google Scholar
  8. Dauer, R. M. (1983). Stress-timing and syllable-timing reanalyzed. Journal of Phonetics, 11, 51–62.Google Scholar
  9. Delignieres, D., Ramdani, S., Lemoine, L., Torre, K., Fortes, M., & Ninot, G. (2006). Fractal analyses for ‘short’time series: A re-assessment of classical methods. Journal of Mathematical Psychology, 50(6), 525–544.CrossRefGoogle Scholar
  10. Dellwo, V., Steiner, I., Aschenberner, B., Dankovičová, J., & Wagner, P. (2004). The BonnTempo-Corpus and BonnTempo-Tools: A database for the study of speech rhythm and rate. Proceedings of the 8th ICSLP, Jeju Island, Korea.Google Scholar
  11. Eke, A., Herman, P., Kocsis, L., & Kozak, L. R. (2002). Fractal characterization of complexity in temporal physiological signals. Physiological Measurement, 23(1), R1.CrossRefPubMedGoogle Scholar
  12. Gilden, D. L. (2001). Cognitive emissions of 1/f noise. Psychological Review, 108(1), 33.CrossRefPubMedGoogle Scholar
  13. Goldberger, A. L., Amaral, L. A., Hausdorff, J. M., Ivanov, P. C., Peng, C. K., & Stanley, H. E. (2002). Fractal dynamics in physiology: Alterations with disease and aging. Proceedings of the National Academy of Sciences, 99(suppl 1), 2466–2472.CrossRefGoogle Scholar
  14. Grabe, E., & Low, E. L. (2002). Durational variability in speech and the rhythm class hypothesis. In C. Gussenhoven & N. Warner, Laboratory phonology (pp. 515–546). 7. Berlin: Mouton de Gruyter.Google Scholar
  15. Granger, C. W., & Joyeux, R. (1980). An introduction to long‐memory time series models and fractional differencing. Journal of Time Series Analysis, 1(1), 15–29.Google Scholar
  16. Hannon, E. E. (2009). Perceiving speech rhythm in music: Listeners classify instrumental songs according to language of origin. Cognition, 111(3), 403–409.CrossRefGoogle Scholar
  17. Hausdorff, J. M., Peng, C. K., Ladin, Z. V. I., Wei, J. Y., & Goldberger, A. L. (1995). Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. Journal of Applied Physiology, 78(1), 349–358.PubMedGoogle Scholar
  18. Holden, J. G. (2005). Gauging the fractal dimension of response times from cognitive tasks. Contemporary nonlinear methods for behavioral scientists: A webbook tutorial, 267–318.Google Scholar
  19. Huron, D., & Ollen, J. (2003). Agogic contrast in French and English themes: Further support for Patel and Daniele (2003). Music Perception, 21(2), 267.CrossRefGoogle Scholar
  20. Hurst, H. E. (1951). Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, 116, 770–808.Google Scholar
  21. Janata, P., Tomic, S. T., & Haberman, J. M. (2012). Sensorimotor coupling in music and the psychology of the groove. Journal of Experimental Psychology: General, 141, 54–75. doi:10.1037/a0024208 CrossRefGoogle Scholar
  22. Jusczyk, P. W., & Krumhansl, C. L. (1993). Pitch and rhythmic patterns affecting infants' sensitivity to musical phrase structure. Journal of Experimental Psychology: Human Perception and Performance, 19(3), 627.PubMedGoogle Scholar
  23. Kello, C. T., Brown, G. D., Ferrer-i-Cancho, R., Holden, J. G., Linkenkaer-Hansen, K., Rhodes, T., & Van Orden, G. C. (2010). Scaling laws in cognitive sciences. Trends in Cognitive Sciences, 14(5), 223–232.CrossRefPubMedGoogle Scholar
  24. Lerdahl, F., & Jackendoff, R. (1983). An overview of hierarchical structure in music. Music Perception, 229–252.Google Scholar
  25. London, J. (2000). Hierarchical representations of complex meters. In Proceedings of the 6th International Conference on Music, Perception and Cognition.Google Scholar
  26. London, J., & Jones, K. (2011). Rhythmic refinements to the nPVI measure: A reanalysis of Patel & Daniele (2003a). Music Perception, 29(1), 115–120.CrossRefGoogle Scholar
  27. Low, L. E., Grabe, E., & Nolan, F. (2000). Q uantitative characterizations of speech rhythm: Syllable-timing in Singapore English. Language and Speech, 43(4), 377–401.CrossRefGoogle Scholar
  28. Luque, J., Luque, B., & Lacasa, L. (2015). Scaling and universality in the human voice. Journal of the Royal Society Interface, 12(105), 20141344.CrossRefPubMedCentralGoogle Scholar
  29. Madison, G., Forsman, L., Blom, Ö., Karabanov, A., & Ullén, F. (2009). Correlations between intelligence and components of serial timing variability. Intelligence, 37(1), 68–75.CrossRefGoogle Scholar
  30. Mandelbrot, B. B., & Wallis, J. R. (1969). Some long-run properties of geophysical records. Water Resources Research, 5(2), 321–340.CrossRefGoogle Scholar
  31. Marmelat, V., Torre, K., & Delignières, D. (2012). Relative roughness: An index for testing the suitability of the monofractal model. Frontiers in Physiology, 3.Google Scholar
  32. Maylor, E. A., Chater, N., & Brown, G. D. (2001). Scale invariance in the retrieval of retrospective and prospective memories. Psychonomic Bulletin & Review, 8(1), 162–167.CrossRefGoogle Scholar
  33. Nespor, M. (1990). On the rhythm parameter in phonology. In I. Rocca (Ed.), Logical issues in language acquisition (pp. 157–175). Dordrecht: Foris.Google Scholar
  34. Patel, A. D. (2010). Music, language, and the brain. New York: Oxford University Press.Google Scholar
  35. Patel, A. D., & Daniele, J. R. (2003). An empirical comparison of rhythm in language and music. Cognition, 87(1), B35–B45.CrossRefPubMedGoogle Scholar
  36. Patel, A. D., Iversen, J. R., & Rosenberg, J. C. (2006). Comparing the rhythm and melody of speech and music: The case of British English and French. The Journal of the Acoustical Society of America, 119(5), 3034–3047.CrossRefPubMedGoogle Scholar
  37. Pike, K. N. (1945). The intonation of American English (pp. 34–35). Ann Arbor, MI: University of Michigan Press.Google Scholar
  38. Ramos-Fernández, G., Mateos, J. L., Miramontes, O., Cocho, G., Larralde, H., & Ayala-Orozco, B. (2004). Lévy walk patterns in the foraging movements of spider monkeys (Ateles geoffroyi). Behavioral Ecology and Sociobiology, 55(3), 223–230.CrossRefGoogle Scholar
  39. Ramus, F. (2002). Acoustic correlates of linguistic rhythm: Perspectives. Proceedings of Speech Prosody 2002, Aix-en-Provence (pp. 115–120). Aix-en-Provence: Laboratoire Parole et Langage.Google Scholar
  40. Ramus, F., Nespor, M., & Mehler, J. (1999). Correlates of linguistic rhythm in the speech signal. Cognition, 73, 265–292.CrossRefPubMedGoogle Scholar
  41. Rhodes, T., & Turvey, M. T. (2007). Human memory retrieval as Lévy foraging. Physica A: Statistical Mechanics and its Applications, 385(1), 255–260.CrossRefGoogle Scholar
  42. Ross, J. M., Warlaumont, A. S., Abney, D. H., Rigoli, L. M., Balasubramaniam, R. (2016). Influence of musical groove on postural sway. Journal of Experimental Psychology: Human Perception and Performance. doi:10.1037/xhp0000198
  43. Sims, D. W., Southall, E. J., Humphries, N. E., Hays, G. C., Bradshaw, C. J., Pitchford, J. W.,… & Morritt, D. (2008). Scaling laws of marine predator search behaviour. Nature, 451(7182), 1098–1102.Google Scholar
  44. Slifkin, A. B., & Newell, K. M. (1998). Is variability in human performance a reflection of system noise?. Current directions in psychological science, 170–177.Google Scholar
  45. Torre, K., & Balasubramaniam, R. (2011). Disentangling stability, variability and adaptability in human performance: Focus on the interplay between local variance and serial correlation. Journal of Experimental Psychology: Human Perception and Performance, 37(2), 539.PubMedGoogle Scholar
  46. Torre, K., Balasubramaniam, R., & Delignières, D. (2010). Oscillating in synchrony with a metronome: Serial dependence, limit cycle dynamics, and modeling. Motor Control, 13, 323–343.CrossRefGoogle Scholar
  47. Torre, K., Delignieres, D., & Lemoine, L. (2007). Detection of long-range dependence and estimation of fractal exponents through ARFIMA modelling. British Journal of Mathematical and Statistical Psychology, 60(1), 85–106.CrossRefPubMedGoogle Scholar
  48. Torre, K., Varlet, M., & Marmelat, V. (2013). Predicting the biological variability of environmental rhythms: Weak or strong anticipation for sensorimotor synchronization? Brain and Cognition, 83(3), 342–350.CrossRefPubMedGoogle Scholar
  49. Wagenmakers, E. J., Farrell, S., & Ratcliff, R. (2004). Estimation and interpretation of 1/fα noise in human cognition. Psychonomic Bulletin & Review, 11(4), 579–615.CrossRefGoogle Scholar
  50. Weron, R. (2002). Estimating long-range dependence: Finite sample properties and confidence intervals. Physica A: Statistical Mechanics and its Applications, 312(1), 285–299.CrossRefGoogle Scholar
  51. West, B. J. (2006). Where medicine went wrong: Rediscovering the path to complexity (pp. 119–172). London: World Scientific.Google Scholar
  52. Wijnants, M., Cox, R., Hasselman, F., Bosman, A., & Van Orden, G. (2013). Does sample rate introduce an artifact in spectral analysis of continuous processes?. Frontiers in Physiology, 3, 495.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2016

Authors and Affiliations

  • Drew H. Abney
    • 1
  • Christopher T. Kello
    • 1
  • Ramesh Balasubramaniam
    • 1
  1. 1.Cognitive and Information SciencesUniversity of California, MercedMercedUSA

Personalised recommendations