Skip to main content

Evaluation of the attention network test using vibrotactile stimulations

Abstract

We report a vibrotactile version of the attention network test (ANT)—the tactile ANT (T-ANT). It has been questioned whether attentional components are modality specific or not. The T-ANT explores alertness, orienting, cognitive control, and their relationships, similar to its visual counterpart, in the tactile modality. The unique features of the T-ANT are in utilizing stimuli on a single plane—the torso—and replacing the original imperative flanker task with a tactile Simon task. Subjects wore a waist belt mounted with two vibrotactile stimulators situated on the back and positioned to the right and left of the spinal column. They responded by pressing keys with their right or left hand in reaction to the type of vibrotactile stimulation (pulsed/continuous signal). On a single trial, an alerting tone was followed by a short tactile (informative/noninformative) peripheral cue and an imperative tactile Simon task target. The T-ANT was compared with a variant of the ANT in which the flanker task was replaced with a visual Simon task. Experimental data showed effects of orienting over control only when the peripheral cues were informative. In contrast to the visual task, interactions between alertness and control or alertness and orienting were not found in the tactile task. A possible rationale for these results is discussed. The T-ANT allows examination of attentional processes among patients with tactile attentional deficits and patients with eyesight deficits who cannot take part in visual tasks. Technological advancement would enable implementation of the T-ANT in brain-imaging studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Aisenberg, D., Salzer, Y., Gotler, A., Mannheim, I., & Henik, A. (2011). Cross-modal processing and cognitive control. In D. Algom, D. Zakay, E. Chajut, S. Shaki, Y. Mama, & V. Shakuf (Eds.), Proceedings of the 27th Annual Meeting of the International Society for Psychophysics (vol. 27, pp. 211–216). Raanana, Israel: International Society for Psychophysics.

  • Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450. doi:10.1146/annurev.neuro.28.061604.135709

    Article  PubMed  Google Scholar 

  • Bach-y-Rita, P., & Kercel, S. W. (2003). Sensory substitution and the human–machine interface. Trends in Cognitive Sciences, 7, 541–546. doi:10.1016/j.tics.2003.10.013

    Article  PubMed  Google Scholar 

  • Böckler, A., Alpay, G., & Stürmer, B. (2011). Accessory stimuli affect the emergence of conflict, not conflict control. Experimental Psychology, 58, 102–109. doi:10.1027/1618-3169/a000073

    Article  PubMed  Google Scholar 

  • Brozzoli, C., Demattè, M. L., Pavani, F., Frassinetti, F., & Farnè, A. (2006). Neglect and extinction: within and between sensory modalities. Restorative Neurology and Neuroscience, 24, 217–232. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17119300

  • Callejas, A., Lupiáñez, J., Funes, M. J., & Tudela, P. (2005). Modulations among the alerting, orienting and executive control networks. Experimental Brain Research, 167, 27–37. doi:10.1007/s00221-005-2365-z

    Article  PubMed  Google Scholar 

  • Chica, A. B., Sanabria, D., Lupiáñez, J., & Spence, C. (2007). Comparing intramodal and crossmodal cuing in the endogenous orienting of spatial attention. Experimental Brain Research, 179, 353–364. doi:10.1007/s00221-006-0798-7

    Article  PubMed  Google Scholar 

  • Cohen, N., Henik, A., & Mor, N. (2011). Can emotion modulate attention? Evidence for reciprocal links in the attentional network test. Experimental Psychology, 58, 171–179. doi:10.1027/1618-3169/a000083

    Article  PubMed  Google Scholar 

  • Costa, A., Hernández, M., & Sebastián-Gallés, N. (2008). Bilingualism aids conflict resolution: evidence from the ANT task. Cognition, 106, 59–86. doi:10.1016/j.cognition.2006.12.013

    Article  PubMed  Google Scholar 

  • Egner, T. (2008). Multiple conflict-driven control mechanisms in the human brain. Trends in Cognitive Sciences, 12, 374–380. doi:10.1016/j.tics.2008.07.001

    Article  PubMed  Google Scholar 

  • Eriksen, B., & Eriksen, C. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Attention, Perception, & Psychophysics, 16, 143–149. doi:10.3758/BF03203267

    Article  Google Scholar 

  • Fan, J., Gu, X., Guise, K. G., Liu, X., Fossella, J., Wang, H., & Posner, M. I. (2009). Testing the behavioral interaction and integration of attentional networks. Brain and Cognition, 70, 209–220. doi:10.1016/j.bandc.2009.02.002

    Article  PubMed Central  PubMed  Google Scholar 

  • Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14, 340–347. doi:10.1162/089892902317361886

    Article  PubMed  Google Scholar 

  • Fischer, R., Plessow, F., & Kiesel, A. (2010). Auditory warning signals affect mechanisms of response selection: evidence from a Simon task. Experimental Psychology, 57, 89–97. doi:10.1027/1618-3169/a000012

    Article  PubMed  Google Scholar 

  • Fuentes, L. J., & Campoy, G. (2008). The time course of alerting effect over orienting in the attention network test. Experimental Brain Research, 185, 667–672. doi:10.1007/s00221-007-1193-8

    Article  PubMed  Google Scholar 

  • Funes, M. J., Lupiáñez, J., & Milliken, B. (2007). Separate mechanisms recruited by exogenous and endogenous spatial cues: Evidence from a spatial Stroop paradigm. Journal of Experimental Psychology: Human Perception and Performance, 33, 348–362. doi:10.1037/0096-1523.33.2.348

    PubMed  Google Scholar 

  • Garcia, A., Finomore, V., Burnett, G., Calvo, A., Baldwin, C., & Brill, C. (2012). Evaluation of multimodal displays for waypoint navigation. In 2012 I.E. International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (pp. 134–137). Ieee. doi:10.1109/CogSIMA.2012.6188365

  • Geldard, F. A., & Sherrick, C. E. (1972). The cutaneous “rabbit”: A perceptual illusion. Science, 178, 178–179. doi:10.1126/science.178.4057.178. PMID 5076909

    Article  PubMed  Google Scholar 

  • Hasbroucq, T., & Guiard, Y. (1992). The effects of intensity and irrelevant location of a tactile stimulation in a choice reaction time task. Neuropsychologia, 30, 91–94. doi:10.1016/0028-3932(92)90017-G

    Article  PubMed  Google Scholar 

  • Hommel, B. (2011). The Simon effect as tool and heuristic. Acta Psychologica, 136, 189–202. doi:10.1016/j.actpsy.2010.04.011

    Article  PubMed  Google Scholar 

  • Ishigami, Y., & Klein, R. M. (2009). Are individual differences in absentmindedness correlated with individual differences in attention? Journal of Individual Differences, 30, 220–237. doi:10.1027/1614-0001.30.4.220

    Article  Google Scholar 

  • Jennings, J. M., Dagenbach, D., Engle, C. M., & Funke, L. J. (2007). Age-related changes and the attention network task: An examination of alerting, orienting, and executive function. Aging, Neuropsychology, and Cognition: A Journal on Normal and Dysfunctional Development, 14, 353–369. doi:10.1080/13825580600788837

    Article  Google Scholar 

  • Jha, A. P., Krompinger, J., & Baime, M. J. (2007). Mindfulness training modifies subsystems of attention. Cognitive, Affective, & Behavioral Neuroscience, 7, 109–119.

    Article  Google Scholar 

  • Jonides, J. (1981). Voluntary versus automatic control over the mind’s eye's movement. In J. B. Long & A. D. Baddeley (Eds.), Attention and performance XI (pp. 187–203). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4, 138–147. doi:10.1016/S1364-6613(00)01452-2

    Article  PubMed  Google Scholar 

  • Konrad, K., Neufang, S., Thiel, C. M., Specht, K., Hanisch, C., Fan, J., … Fink, G. R. (2005). Development of attentional networks: an fMRI study with children and adults. NeuroImage, 28, 429–439. doi:10.1016/j.neuroimage.2005.06.065

  • Kratz, O., Studer, P., Malcherek, S., Erbe, K., Moll, G. H., & Heinrich, H. (2011). Attentional processes in children with ADHD: an event-related potential study using the attention network test. International Journal of Psychophysiology, 81, 82–90. doi:10.1016/j.ijpsycho.2011.05.008

    Article  PubMed  Google Scholar 

  • Lehtinen, V., Oulasvirta, A., Salovaara, A., & Nurmi, P. (2012). Dynamic tactile guidance for visual search tasks. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology - UIST ’12 (pp. 445–452). New York, NY: ACM Press. doi:10.1145/2380116.2380173

    Chapter  Google Scholar 

  • Macaluso, E. (2010). Orienting of spatial attention and the interplay between the senses. Cortex, 46, 282–297. doi:10.1016/j.cortex.2009.05.010

    Article  PubMed  Google Scholar 

  • Medina, O. J. (2006). Somatosensory frames of reference. Maryland, U.S.A.: Johns Hopkins University.

    Google Scholar 

  • Nee, D. E., Wager, T. D., & Jonides, J. (2007). Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cognitive, Affective & Behavioral Neuroscience, 7, 1–17. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17598730

  • Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73–89. doi:10.1146/annurev-neuro-062111-150525

    Article  PubMed Central  PubMed  Google Scholar 

  • Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25. doi:10.1080/00335558008248231

    Article  PubMed  Google Scholar 

  • Posner, M. I., Rothbart, M. K., Vizueta, N., Levy, K. N., Evans, D. E., Thomas, K. M., & Clarkin, J. F. (2002). Attentional mechanisms of borderline personality disorder. Proceedings of the National Academy of Sciences of the United States of America, 99, 16366–16370. doi:10.1073/pnas.252644699

    Article  PubMed Central  PubMed  Google Scholar 

  • Raz, A., & Buhle, J. (2006). Typologies of attentional networks. Nature Reviews Neuroscience, 7, 367–379. doi:10.1038/nrn1903

    Article  PubMed  Google Scholar 

  • Roberts, K. L., Summerfield, A. Q., & Hall, D. A. (2006). Presentation modality influences behavioral measures of alerting, orienting, and executive control. Journal of the International Neuropsychological Society, 12, 485–492. doi:10.1017/S1355617706060620

    Article  PubMed  Google Scholar 

  • Robertson, I. H., Mattingley, J. B., Rorden, C., & Driver, J. (1998). Phasic alerting of neglect patients overcomes their spatial deficit in visual awareness. Nature, 395, 169–172. doi:10.1038/25993

    Article  PubMed  Google Scholar 

  • Rodway, P. (2005). The modality shift effect and the effectiveness of warning signals in different modalities. Acta Psychologica, 120, 199–226. doi:10.1016/j.actpsy.2005.05.002

    Article  PubMed  Google Scholar 

  • Rubichi, S., Nicoletti, R., Iani, C., & Umiltà, C. (1997). The Simon effect occurs relative to the direction of an attention shift. Journal of Experimental Psychology: Human Perception and Performance, 23, 1353–1364. doi:10.1037/0096-1523.23.5.1353

    PubMed  Google Scholar 

  • Salzer, Y., Aisenberg, D., Oron-Gilad, T., & Henik, A. (2013). In touch with the Simon effect. Experimental Psychology. E-pub ahead of print.

  • Salzer, Y., Gotler, A., Oron-Gilad, T., & Henik, A. (2013). Where you touch counts more: Tactile versus visual Simon tasks. Manuscript submitted for publication.

  • Salzer, Y., Oron-Gilad, T., Ronen, A., & Parmet, Y. (2011). Vibrotactile “on-thigh” alerting system in the cockpit. Human Factors: The Journal of the Human Factors and Ergonomics Society, 53, 118–131. doi:10.1177/0018720811403139

    Article  Google Scholar 

  • Simon, R. J., & Small, A. M. J. (1969). Processing auditory information: Interference from an irrlevant cue. Journal of Applied Psychology, 53, 433–435. doi:10.1037/h0028034

    Article  PubMed  Google Scholar 

  • Spence, C., & Gallace, A. (2007). Recent developments in the study of tactile attention. Canadian Journal of Experimental Psychology, 61, 196–207. doi:10.1037/cjep2007021

    Article  PubMed  Google Scholar 

  • Spence, C., Pavani, F., & Driver, J. (2000). Crossmodal links between vision and touch in covert endogenous spatial attention. Journal of Experimental Psychology: Human Perception and Performance, 26, 1298–1319. doi:10.1037/0096-1523.26.4.1298

    PubMed  Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662. doi:10.1037/h0054651

    Article  Google Scholar 

  • Verrillo, R. T. (1966). Vibrotactile thresholds for hairy skin. Journal of Experimental Psychology, 72, 47–50.

    Article  PubMed  Google Scholar 

  • Wager, T. D., Sylvester, C.-Y. C., Lacey, S. C., Nee, D. E., Franklin, M., & Jonides, J. (2005). Common and unique components of response inhibition revealed by fMRI. NeuroImage, 27, 323–340. doi:10.1016/j.neuroimage.2005.01.054

    Article  PubMed  Google Scholar 

  • Wang, K., Fan, J., Dong, Y., Wang, C.-Q., Lee, T. M. C., & Posner, M. I. (2005). Selective impairment of attentional networks of orienting and executive control in schizophrenia. Schizophrenia Research, 78, 235–241. doi:10.1016/j.schres.2005.01.019

    Article  PubMed  Google Scholar 

  • Weinbach, N., & Henik, A. (2011). Phasic alertness can modulate executive control by enhancing global processing of visual stimuli. Cognition, 121, 454–458. doi:10.1016/j.cognition.2011.08.010

    Article  PubMed  Google Scholar 

  • Weinbach, N., & Henik, A. (2012). The relationship between alertness and executive control. Journal of Experimental Psychology: Human Perception and Performance, 38, 1530–1540. doi:10.1037/a0027875

    PubMed  Google Scholar 

  • Xu, C., Israr, A., Poupyrev, I., Bau, O., & Harrison, C. (2011). Tactile display for the visually impaired using TeslaTouch. In CHI ’11 Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems (pp. 317–322). New York, New York, USA: ACM Press. doi:10.1145/1979742.1979705

    Google Scholar 

  • Yanaka, H. T., Saito, D. N., Uchiyama, Y., & Sadato, N. (2010). Neural substrates of phasic alertness: A functional magnetic resonance imaging study. Neuroscience Research, 68, 51–58. doi:10.1016/j.neures.2010.05.005

    Article  PubMed  Google Scholar 

  • Zeng, L., & Weber, G. (2012). ATMap : Annotated Tactile Maps for the Visually Impaired. In A. Esposito, A. M. Esposito, A. Vinciarelli, R. Hoffmann, & V. C. Müller (Eds.), Cognitive behavioural systems. Lecture notes in computer science (pp. 290–298). Berlin Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  • Zimba, L. D., & Brito, C. F. (1995). Attention precuing and Simon effects: A test of the attention-coding account of the Simon effect. Psychological Research, 58, 102–118. doi:10.1007/BF00571099

    Article  Google Scholar 

Download references

Acknowledgments

This study was partially supported by scholarships for Y.S. from the Council of Higher Education under the program of Combined Technologies; the BGU Negev Scholarship; the Ministry of Science and Technology under the program of Promotion of Women in Science and Technology; and a Kreitman Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yael Salzer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salzer, Y., Oron-Gilad, T. & Henik, A. Evaluation of the attention network test using vibrotactile stimulations. Behav Res 47, 395–408 (2015). https://doi.org/10.3758/s13428-014-0479-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13428-014-0479-6

Keywords

  • Alertness
  • ANT
  • T-ANT
  • Attention Network Test
  • Cognitive control
  • Orienting
  • Spatial attention
  • Simon
  • Tactile