Skip to main content

A MATLAB toolbox for the efficient estimation of the psychometric function using the updated maximum-likelihood adaptive procedure

Abstract

A MATLAB toolbox for the efficient estimation of the threshold, slope, and lapse rate of the psychometric function is described. The toolbox enables the efficient implementation of the updated maximum-likelihood (UML) procedure. The toolbox uses an object-oriented architecture for organizing the experimental variables and computational algorithms, which provides experimenters with flexibility in experimental design and data management. Descriptions of the UML procedure and the UML Toolbox are provided, followed by toolbox use examples. Finally, guidelines and recommendations of parameter configurations are given.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    A well-organized list of software available for the analysis of psychophysical functions, as well libraries/toolboxes for the collection of psychophysical data is available at http://visionscience.com/documents/strasburger/strasburger.html.

  2. 2.

    Although the current toolbox was developed for the MATLAB environment, all source codes are contained in the toolbox and can be modified into other programing environments or languages.

Reference

  1. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. doi:10.1163/156856897X00357

    Article  PubMed  Google Scholar 

  2. Brand, T., & Kollmeier, B. (2002). Efficient adaptive procedures for threshold and concurrent slope estimates for psychophysics and speech intelligibility tests. Journal of the Acoustical Society of America, 111, 2801–2810.

    Article  PubMed  Google Scholar 

  3. Derman, C. (1957). Non-parametric up-and-down experimentation. Annals of Mathematical Statistics, 28, 795–798. doi:10.1214/aoms/1177706895

    Article  Google Scholar 

  4. Durham, S. D., & Flournoy, N. (1995). Up-and-down designs I: Stationary treatment distributions. In N. Flournoy & W. F. Rosenberger (Eds.), Adaptive designs: Papers from the Joint AMS–IMS–SIAM Summer Conference held at Mt. Holyoke College, South Hadley, MA, July 1992 (pp. 139–157). Hayward, CA: Institute of Mathematical Statistics.

    Chapter  Google Scholar 

  5. Emerson, P. L. (1986a). Observations on maximum likelihood and Bayesian methods of forced choice sequential threshold estimation. Perception & Psychophysics, 39, 151–153.

    Article  Google Scholar 

  6. Emerson, P. L. (1986b). A quadrature method for Bayesian sequential threshold estimation. Perception & Psychophysics, 39, 381–383.

    Article  Google Scholar 

  7. Fründ, I., Haenel, N. V., & Wichmann, F. A. (2011). Inference for psychometric functions in the presence of non-stationary behavior. Journal of Vision, 11(6), 16. doi:10.1167/11.6.16

    Article  PubMed  Google Scholar 

  8. Garcia-Perez, M. A. (1998). Forced-choice staircases with fixed step sizes: Asymptotic and small-sample properties. Vision Research, 38, 1861–1881.

    Article  PubMed  Google Scholar 

  9. Grassi, M., & Soranzo, A. (2009). MLP: A MATLAB toolbox for rapid and reliable auditory threshold estimation. Behavior Research Methods, 41, 20–28. doi:10.3758/BRM.41.1.20

    Article  PubMed  Google Scholar 

  10. Green, D. M. (1990). Stimulus selection in adaptive psychophysical procedures. Journal of the Acoustical Society of America, 87, 2662–2674.

    Article  PubMed  Google Scholar 

  11. Gu, X., & Green, D. M. (1994). Further studies of a maximum-likelihood yes–no procedure. Journal of the Acoustical Society of America, 96, 93–101.

    Article  PubMed  Google Scholar 

  12. Hall, J. L. (1968). Maximum-likelihood sequential procedure for estimation of psychometric functions [Abstract]. Journal of the Acoustical Society of America, 44, 370. doi:10.1121/1.1970490

    Article  Google Scholar 

  13. Hall, J. L. (1981). Hybrid adaptive procedures for the estimation of psychometric functions. Journal of the Acoustical Society of America, 69, 1763–1769.

    Article  PubMed  Google Scholar 

  14. Harvey, L. O., Jr. (1986). Efficient estimation of sensory thresholds. Behavior Research Methods, Instruments, & Computers, 18, 623–632.

    Article  Google Scholar 

  15. Harvey, L. O., Jr. (1997). Efficient estimation of sensory thresholds with ML-PEST. Spatial Vision, 11, 121–128. doi:10.1163/156856897X00159

    Article  PubMed  Google Scholar 

  16. Kaernbach, C. (1991). Simple adaptive testing with the weighted up–down method. Perception & Psychophysics, 49, 227–229. doi:10.3758/BF03214307

    Article  Google Scholar 

  17. Kaernbach, C. (2001). Slope bias of psychometric functions derived from adaptive data. Perception & Psychophysics, 63, 1389–1398.

    Article  Google Scholar 

  18. King-Smith, P. E., Grigsby, S. S., Vingrys, A. J., Benes, S. C., & Supowit, A. (1994). Efficient and unbiased modifications of the QUEST threshold method: Theory, simulations, experimental evaluation and practical implementation. Vision Research, 34, 885–912.

    Article  PubMed  Google Scholar 

  19. King-Smith, P. E., & Rose, D. (1997). Principles of an adaptive method for measuring the slope of the psychometric function. Vision Research, 37, 1595–1604.

    Article  PubMed  Google Scholar 

  20. Klein, S. A. (2001). Measuring, estimating, and understanding the psychometric function: A commentary. Perception & Psychophysics, 63, 1421–1455.

    Article  Google Scholar 

  21. Kontsevich, L. L., & Tyler, C. W. (1999). Bayesian adaptive estimation of psychometric slope and threshold. Vision Research, 39, 2729–2737.

    Article  PubMed  Google Scholar 

  22. Lam, C. F., Dubno, J. R., Ahlstrom, J. B., He, N. J., & Mills, J. H. (1997). Estimating parameters for psychometric functions using the four-point sampling method. Journal of the Acoustical Society of America, 102, 3697–3703.

    Article  PubMed  Google Scholar 

  23. Laming, D., & Marsh, D. (1988). Some performance tests of Quest on measurements of vibrotactile thresholds. Perception & Psychophysics, 44, 99–107.

    Article  Google Scholar 

  24. Leek, M. R. (2001). Adaptive procedures in psychophysical research. Perception & Psychophysics, 63, 1279–1292.

    Article  Google Scholar 

  25. Leek, M. R., Hanna, T. E., & Marshall, L. (1992). Estimation of psychometric functions from adaptive tracking procedures. Perception & Psychophysics, 51(3), 247–256.

    Google Scholar 

  26. Levitt, H. (1971). Transformed up–down methods in psychoacoustics. Journal of the Acoustical Society of America, 49(2, Pt. 2), 467–477. doi:10.1121/1.1912375

    Article  PubMed  Google Scholar 

  27. Lieberman, H. R., & Pentland, A. P. (1982). Microcomputer-based estimation of psychophysical thresholds: The Best PEST. Behavior Research Methods & Instrumentation, 14, 21–25. doi:10.3758/BF03202110

    Article  Google Scholar 

  28. Otto, S., & Weinzierl, S. (2009). Comparative simulations of adaptive psychometric procedures. In Jahrestagung der Deutschen Gesellschaft für Akustik (pp. 1276–1279). Rotterdam, The Netherlands: Deutsche Gesellschaft für Akustik.

  29. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442. doi:10.1163/156856897X00366

    Article  PubMed  Google Scholar 

  30. Poppe, S., Benner, P., & Elze, T. (2012). A predictive approach to nonparametric inference for adaptive sequential sampling of psychophysical experiments. Journal of Mathematical Psychology, 56, 179–195.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Prins, N. (2012a). The adaptive psi method and the lapse rate. Journal of Vision, 12(9), 322. doi:10.1167/12.9.322

    Article  Google Scholar 

  32. Prins, N. (2012b). The psychometric function: The lapse rate revisited. Journal of Vision, 12(6), 25. doi:10.1167/12.6.25

    Article  PubMed  Google Scholar 

  33. Prins, N. (2013). The psi-marginal adaptive method: How to give nuisance parameters the attention they deserve (no more, no less). Journal of Vision, 13(7), 3. doi:10.1167/13.7.3

    Article  PubMed  Google Scholar 

  34. Prins, N., & Kingdom, F. A. A. (2009). Palamedes: MATLAB routines for analyzing psychophysical data. www.palamedestoolbox.org

  35. Rose, R. M., Teller, D. Y., & Rendleman, P. (1970). Statistical properties of staircase estimates. Perception & Psychophysics, 8, 199–204.

    Article  Google Scholar 

  36. Shen, Y. (2013). Comparing adaptive procedures for estimating the psychometric function for an auditory gap detection task. Attention, Perception, & Psychophysics, 75, 771–780. doi:10.3758/s13414-013-0438-9

    Article  Google Scholar 

  37. Shen, Y., & Richards, V. M. (2012). A maximum-likelihood procedure for estimating psychometric functions: Thresholds, slopes, and lapses of attention. Journal of the Acoustical Society of America, 132, 957–967.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Taylor, M. M. (1971). On the efficiency of psychophysical measurement. Journal of the Acoustical Society of America, 49, 505–508.

    Article  PubMed  Google Scholar 

  39. Taylor, M. M., & Creelman, C. D. (1967). PEST: Efficient estimates on probability functions. Journal of the Acoustical Society of America, 41, 782–787.

    Article  Google Scholar 

  40. Treutwein, B. (1995). Adaptive psychophysical procedures. Vision Research, 17, 2503–2522.

    Article  Google Scholar 

  41. Treutwein, B. (1997). YAAP: Yet another adaptive procedure. Spatial Vision, 11, 129–134.

    PubMed  Google Scholar 

  42. Treutwein, B., & Strasburger, H. (1999). Fitting the psychometric function. Perception & Psychophysics, 61, 87–106.

    Article  Google Scholar 

  43. Urban, F. M. (1910). The method of constant stimuli and its generalizations. Psychological Review, 17, 229–259.

    Article  Google Scholar 

  44. Watson, A. B., & Pelli, D. (1983). QUEST: A Bayesian adaptive psychometric method. Perception & Psychophysics, 33, 113–120. doi:10.3758/BF03202828

    Article  Google Scholar 

  45. Watson, A. B., & Solomon, J. A. (1998). Psychophysica: Mathematica notebooks for psychophysical experiments. Spatial Vision, 10, 447–466.

    Article  Google Scholar 

  46. Wetherill, G. B., & Levitt, H. (1965). Sequential estimation of points on a psychometric function. British Journal of Mathematical and Statistical Psychology, 18, 1–10.

    Article  PubMed  Google Scholar 

  47. Wichmann, F. A., & Hill, N. J. (2001a). The psychometric function: I. Fitting, sampling, and goodness of fit. Perception & Psychophysics, 63, 1297–1313. doi:10.3758/BF03194544

    Google Scholar 

  48. Wichmann, F. A., & Hill, N. J. (2001b). The psychometric function: II. Bootstrap-based confidence intervals and sampling. Perception & Psychophysics, 63, 1314–1329. doi:10.3758/BF03194545

    Article  Google Scholar 

  49. Zchaluk, K., & Foster, D. H. (2009). Model-free estimation of the psychometric function. Attention, Perception, & Psychophysics, 71, 1414–1425. doi:10.3758/APP.71.6.1414

    Article  Google Scholar 

Download references

Author note

This work was supported by NIH NIDCD Grant No. R21 DC010058, awarded to the third author. We acknowledge Sierra N. Broussard’s assistance in running several computer simulations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yi Shen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shen, Y., Dai, W. & Richards, V.M. A MATLAB toolbox for the efficient estimation of the psychometric function using the updated maximum-likelihood adaptive procedure. Behav Res 47, 13–26 (2015). https://doi.org/10.3758/s13428-014-0450-6

Download citation

Keywords

  • Psychometric function
  • Adaptive procedure