Behavior Research Methods

, Volume 46, Issue 3, pp 732–744 | Cite as

Algorithmic complexity for short binary strings applied to psychology: a primer

  • Nicolas Gauvrit
  • Hector Zenil
  • Jean-Paul Delahaye
  • Fernando Soler-Toscano
Article

Abstract

As human randomness production has come to be more closely studied and used to assess executive functions (especially inhibition), many normative measures for assessing the degree to which a sequence is randomlike have been suggested. However, each of these measures focuses on one feature of randomness, leading researchers to have to use multiple measures. Although algorithmic complexity has been suggested as a means for overcoming this inconvenience, it has never been used, because standard Kolmogorov complexity is inapplicable to short strings (e.g., of length l ≤ 50), due to both computational and theoretical limitations. Here, we describe a novel technique (the coding theorem method) based on the calculation of a universal distribution, which yields an objective and universal measure of algorithmic complexity for short strings that approximates Kolmogorov–Chaitin complexity.

Keywords

Algorithmic complexity Randomness Subjective probability 

References

  1. Aksentijevic, A., & Gibson, K. (2012). Complexity equals change. Cognitive Systems Research, 15–16, 1–16.CrossRefGoogle Scholar
  2. Barbasz, J., Stettner, Z., Wierzchon, M., Piotrowski, K., & Barbasz, A. (2008). How to estimate randomness in random sequence generation tasks? Polish Psychological Bulletin, 39(1), 42–46.CrossRefGoogle Scholar
  3. Becher, V., & Figueira, S. (2002). An example of a computable absolutely normal number. Theoretical Computer Science, 270, 947–958.CrossRefGoogle Scholar
  4. Brady, A. (1983). The determination of the value of Rado’s noncomputable function Sigma(k) for four-state Turing machines. Mathematics of Computation, 40(162), 647–665.Google Scholar
  5. Brugger, P., Landis, T., & Regard, M. (1990). A “sheep-goat effect” in repetition avoidance: Extra-sensory perception as an effect of subjective probability? British Journal of Psychology, 81, 455–468.CrossRefGoogle Scholar
  6. Calude, C. (2002). Information and randomness. an algorithmic perspective (2nd, revised and extended éd.). Springer-Verlag.Google Scholar
  7. Chaitin, G. (1966). On the length of programs for computing finite binary sequences. Journal of the ACM, 13(4), 547–569.CrossRefGoogle Scholar
  8. Champernowne, D. G. (1933). The construction of decimals normal in the scale of ten. Journal of the London Mathematical Society, 8, 254–260.CrossRefGoogle Scholar
  9. Chan, K., Hui, C., Chiu, C., Chan, S., & Lam, M. (2011). Random number generation deficit in early schizophrenia. Perceptual and Motor Skills, 112, 91–103.PubMedCrossRefGoogle Scholar
  10. Chapanis, A. (1995). Human production of “random” numbers. Perceptual and Motor Skills, 81, 1347–1363.CrossRefGoogle Scholar
  11. Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159.PubMedCrossRefGoogle Scholar
  12. Delahaye, J.-P., & Zenil, H. (2007). Randomness and complexity. from Leibnitz to Chaitin. In (p 123-130). World Scientific Publishing.Google Scholar
  13. Delahaye, J.-P., & Zenil, H. (2008). Towards a stable definition of Kolmogorov-Chaitin complexity. (Retrieved from arXiv:0804.3459v3 [cs.IT])Google Scholar
  14. Delahaye, J.-P., & Zenil, H. (2012). Numerical evaluation of the complexity of short strings: A glance into the innermost structure of algorithmic randomness. Applied Mathematics and Computation, 219, 63–77.CrossRefGoogle Scholar
  15. Falk, R., & Konold, C. (1997). Making sense of randomness: Implicit encoding as a basis for judgment. Psychological Review, 104(2), 301–318.CrossRefGoogle Scholar
  16. Ginsburg, N., & Karpiuk, P. (1994). Random generation: Analysis of the responses. Perceptual and Motor Skills, 79, 1059–1067.CrossRefGoogle Scholar
  17. Green, D. (1986). Children’s understanding of randomness: Report of a survey of 1600 children aged 7-11 years. In Proceedings of icots 2 (p. 287-291).Google Scholar
  18. Hahn, U., & Warren, P. (2009). Perceptions of randomness: Why three heads are better than four. Psychological Review, 116(2), 454–461.PubMedCrossRefGoogle Scholar
  19. Heuer, H., Janczyk, M., & Kunde, W. (2010). Random noun generation in younger and older adults. The Quarterly Journal of Experimental Psychology, 63(3), 465–478.PubMedCrossRefGoogle Scholar
  20. Kidd, C., Piantadosi, S., & Aslin, R. (2012). The goldilocks effect: Human infants allocate attention to visual sequences that are neither too simple nor too complex. PLoS, 7(1), e36399.Google Scholar
  21. Kolmogorov, A. (1965). Three approaches to the quantitative definition of information. Problems of Information and Transmission, 1(1), 1–7.Google Scholar
  22. Lempel, A., & Ziv, J. (1976). On the complexity of finite sequences. IEEE Transactions in Information Theory, 22(1), 75–81.CrossRefGoogle Scholar
  23. Li, M., & Vitányi, P. (2008). An introduction to Kolmogorov complexity and its applications. Springer Verlag.Google Scholar
  24. Loetscher, T., Bockisch, C., & Brugger, P. (2009). Eye position predicts what number you have in mind. Current Biology, 20(6), 264–265.CrossRefGoogle Scholar
  25. Loetscher, T., & Brugger, P. (2008). Random number generation in neglect patients reveals enhanced response stereotypy, but no neglect in number space. Neuropsychologia, 47, 276–279.PubMedCrossRefGoogle Scholar
  26. Martin-Löf, P. (1966). The definition of random sequences. Information and Control, 9, 602–619.CrossRefGoogle Scholar
  27. Mittenecker, E. (1958). Die analyse zuflliger reaktionsfolgen [the analysis of “random” action sequences]. Zeitschrift für Experimentelle und Angewandte Psychologie, 5, 45–60.Google Scholar
  28. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. (2000). The unity and diversity of executive functions and their contributions to frontal lobe tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.PubMedCrossRefGoogle Scholar
  29. Nickerson, R. (2002). The production and perception of randomness. Psychological Review, 109(2), 330–357.PubMedCrossRefGoogle Scholar
  30. Piaget, J., & Inhelder, B. (1951). La genèse de l’idée de hasard chez l’enfant. Presses Universitaires de France.Google Scholar
  31. Proios, H., Asaridou, S. S., & Brugger, P. (2008). Random number generation in patients with aphasia: A test of executive functions. Acta Neuropsychologica, 6, 157–168.Google Scholar
  32. Radò, T. (1962). On non-computable functions. Bell Sytem Technical Journal, 41(3), 877–884.CrossRefGoogle Scholar
  33. Rinehart, N. J., Bradshaw, J. L., Moss, S. A., Brereton, A. V., & Tonge, B. J. (2006). Pseudo-random number generation in children with high-functioning autism and Asperger’s disorder. Autism, 10(1), 70–85.PubMedCrossRefGoogle Scholar
  34. Schulter, G., Mittenecker, E., & Papousek, I. (2010). A computer program for testing and analyzing random generation behavior in normal and clinical samples: The Mittenecker pointing test. Behavior Research Methods, 42, 333–341.PubMedCrossRefGoogle Scholar
  35. Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. University of Illinois Press.Google Scholar
  36. Shen, L., & Radó, T. (1965). Computer studies of turing machine problems. Journal of the ACM, 12(2), 196–212.CrossRefGoogle Scholar
  37. Simon, H. A. (1972). Complexity and the representation of patterned sequences of symbols. Psychological Review, 79, 369–382.CrossRefGoogle Scholar
  38. Soler-Toscano, F., Zenil, H., Delahaye, J.-P., & Gauvrit, N. (2012). Calculating Kolmogorov complexity from the output frequency distributions of small turing machines. (Retrieved from arXiv:1211.1302v1 [cs.IT])Google Scholar
  39. Solomonoff, R. (1960). A preliminary report on a general theory of inductive inference (Rapport technique). Cambridge: Zator Co.Google Scholar
  40. Stoffers, D., Berendse, H. W., Deijen, J. B., & Wolters, E. C. (2001). Motor perseveration is an early sign of Parkinson’s disease. Neurology, 57, 2111–2113.PubMedCrossRefGoogle Scholar
  41. Strenge, H., Lesmana, C. B., & Suryani, L. K. (2009). Random number generation in bilingual Balinese and German students: Preliminary findings from an exploratory cross-cultural study. Perceptual and Motor Skills, 109, 61–75.PubMedCrossRefGoogle Scholar
  42. Taylor, K. I., Salmon, D. P., Monsch, A. U., & Brugger, P. (2005). Semantic and phonemic effects in random word generation: A dissociation between Alzheimer’s and Huntington’s disease patients. Journal of the International Neuropsychological Society, 11(3), 303–310.PubMedCrossRefGoogle Scholar
  43. Towse, J. N., & Cheshire, A. (2007). Random number generation and working memory. European Journal of Cognitive Psychology, 19(3), 374–394.CrossRefGoogle Scholar
  44. Tubau, E., & López-Moliner, J. (2009). Knowing what to respond in the future does not cancel the influence of past events. PLoS ONE, 4(5), e5607.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Turing, A. (1936). On computable numbers, with an application to the entscheidungsproblem. Proceedings of the London Mathematical Society, 2(42), 230–265.Google Scholar
  46. Tversky, A., & Kahneman, D. (1971). Belief in the Òlaw of small numbers.Ó. Psychological Bulletin, 76, 105–110.CrossRefGoogle Scholar
  47. Vandewiele, M., D’Hondt, W., Didillon, W., Iwawaki, S., & Mwamwendat, T. (1986). Number and color preferences in four countries. Perceptual and Motor Skills, 63(2), 945–946.CrossRefGoogle Scholar
  48. Zvonkin, A., & Levin, L. (1970). The complexity of finite objects and the algorithmic concepts of information and randomness. UMN = Russian Mathematic Surveys, 25(6), 83–124.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  • Nicolas Gauvrit
    • 1
  • Hector Zenil
    • 2
  • Jean-Paul Delahaye
    • 3
  • Fernando Soler-Toscano
    • 4
  1. 1.CHART (PARIS-reasoning)University of Paris VIII and EPHEParisFrance
  2. 2.Unit of Computational Medicine, Center for Molecular MedicineKarolinska InstituteStockholmSweden
  3. 3.Laboratoire d’Informatique Fondamentale de LilleLilleFrance
  4. 4.Grupo de Lógica, Lenguaje e InformaciónUniversidad de SevillaSevilleSpain

Personalised recommendations