Behavior Research Methods

, Volume 46, Issue 2, pp 439–447 | Cite as

Direct measurement of the system latency of gaze-contingent displays

  • Daniel R. SaundersEmail author
  • Russell L. Woods


Gaze-contingent displays combine a display device with an eyetracking system to rapidly update an image on the basis of the measured eye position. All such systems have a delay, the system latency, between a change in gaze location and the related change in the display. The system latency is the result of the delays contributed by the eyetracker, the display computer, and the display, and it is affected by the properties of each component, which may include variability. We present a direct, simple, and low-cost method to measure the system latency. The technique uses a device to briefly blind the eyetracker system (e.g., for video-based eyetrackers, a device with infrared light-emitting diodes (LED)), creating an eyetracker event that triggers a change to the display monitor. The time between these two events, as captured by a relatively low-cost consumer camera with high-speed video capability (1,000 Hz), is an accurate measurement of the system latency. With multiple measurements, the distribution of system latencies can be characterized. The same approach can be used to synchronize the eye position time series and a video recording of the visual stimuli that would be displayed in a particular gaze-contingent experiment. We present system latency assessments for several popular types of displays and discuss what values are acceptable for different applications, as well as how system latencies might be improved.


Gaze-contingent display Artificial scotoma Scotoma simulation Eye tracking Eye movements 


Author Note

This research was supported by National Eye Institute Grant No. R01EY019100, awarded to R.L.W.

Supplementary material (4.6 mb)
ESM (ZIP 4.59 MB)


  1. Aguilar, C., & Castet, E. (2011). Gaze-contingent simulation of retinopathy: Some potential pitfalls and remedies. Vision Research, 51, 997–1012. doi: 10.1016/j.visres.2011.02.010 PubMedCrossRefGoogle Scholar
  2. Allison, R., Schumacher, J., Sadr, S., & Herpers, R. (2010). Apparent motion during saccadic suppression periods. Experimental Brain Research, 202, 155–169. doi: 10.1007/s00221-009-2120-y PubMedCrossRefGoogle Scholar
  3. Bacon-Macé, N., Macé, M. J. M., Fabre-Thorpe, M., & Thorpe, S. J. (2005). The time course of visual processing: Backward masking and natural scene categorisation. Vision Research, 45, 1459–1469. doi: 10.1162/08989290152001880 PubMedCrossRefGoogle Scholar
  4. Bernard, J.-B., Scherlen, A.-C., & Castet, E. (2007). Page mode reading with simulated scotomas: A modest effect of interline spacing on reading speed. Vision Research, 47, 3447–3459.PubMedCrossRefGoogle Scholar
  5. Bockisch, C. J., & Miller, J. M. (1999). Different motor systems use similar damped extraretinal eye position information. Vision Research, 39, 1025–1038. doi: 10.1016/S0042-6989(98)00205-3 PubMedCrossRefGoogle Scholar
  6. Bodelón, C., Fallah, M., & Reynolds, J. H. (2007). Temporal resolution for the perception of features and conjunctions. Journal of Neuroscience, 27, 725–730. doi: 10.1523/jneurosci.3860-06.2007 PubMedCrossRefGoogle Scholar
  7. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. doi: 10.1163/156856897X00357 PubMedCrossRefGoogle Scholar
  8. Burr, D. C., Morrone, M. C., & Ross, J. (1994). Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature, 371, 511–513. doi: 10.1038/371511a0 PubMedCrossRefGoogle Scholar
  9. Castelhano, M. S., & Henderson, J. M. (2008). The influence of color on the perception of scene gist. Journal of Experimental Psychology. Human Perception and Performance, 34, 660–675. doi: 10.1037/0096-1523.34.3.660 PubMedCrossRefGoogle Scholar
  10. Cornelissen, F., Peters, E., & Palmer, J. (2002). The eyelink toolbox: Eye tracking with MATLAB and the psychophysics toolbox. Behavior Research Methods, Instruments, & Computers, 34, 613–617. doi: 10.3758/bf03195489 CrossRefGoogle Scholar
  11. Diamond, M. R., Ross, J., & Morrone, M. C. (2000). Extraretinal control of saccadic suppression. Journal of Neuroscience, 20, 3449–3455.PubMedGoogle Scholar
  12. Dorr, M., & Bex, P. J. (2011). A gaze-contingent display to study contrast sensitivity under natural viewing conditions. Paper presented at the SPIE, Human Vision and Electronic Imaging XVI, San Francisco, CA.Google Scholar
  13. Duchowski, A. T., Cournia, N., & Murphy, H. (2004). Gaze-contingent displays: A review. Cyberpsychology & Behavior, 7, 621–634. doi: 10.1089/cpb.2004.7.621 CrossRefGoogle Scholar
  14. Elze, T., & Tanner, T. G. (2012). Temporal properties of liquid crystal displays: Implications for vision science experiments. PLoS One, 7, e44048. doi: 10.1371/journal.pone.0044048 PubMedCrossRefPubMedCentralGoogle Scholar
  15. Fine, E. M., & Rubin, G. S. (1999). Effects of cataract and scotoma on visual acuity: A simulation study. Optometry and Vision Science, 76, 468–473.PubMedCrossRefGoogle Scholar
  16. Geisler, W. S., Perry, J. S., & Najemnik, J. (2006). Visual search: The role of peripheral information measured using gaze-contingent displays. Journal of Vision, 6(9):1, 858–873. doi: 10.1167/6.9.1 Google Scholar
  17. Glaholt, M. G., Rayner, K., & Reingold, E. M. (2012). The mask-onset delay paradigm and the availability of central and peripheral visual information during scene viewing. Journal of Vision, 12(1), 9. doi: 10.1167/12.1.9 PubMedCrossRefGoogle Scholar
  18. Greene, M. R., & Oliva, A. (2009). The briefest of glances: The time course of natural scene understanding. Psychological Science, 20, 464–472. doi: 10.1111/j.1467-9280.2009.02316.x PubMedCrossRefPubMedCentralGoogle Scholar
  19. Henderson, J. M., McClure, K. K., Pierce, S., & Schrock, G. (1997). Object identification without foveal vision: Evidence from an artificial scotoma paradigm. Perception & Psychophysics, 59, 323–346. doi: 10.3758/BF03211901 CrossRefGoogle Scholar
  20. Li, F.-F., Iyer, A., Koch, C., & Perona, P. (2007). What do we perceive in a glance of a real-world scene? Journal of Vision, 7(1), 10. doi: 10.1167/7.1.10 PubMedCrossRefPubMedCentralGoogle Scholar
  21. Loschky, L. C., & McConkie, G. W. (2000). User performance with gaze contingent multiresolutional displays. Proceedings of the 2000 Symposium on Eye Tracking Research and Applications (pp. 97–103). Palm Beach Gardens, FL: ACM. doi: 10.1145/355017.355032
  22. Loschky, L. C., & McConkie, G. W. (2002). Investigating spatial vision and dynamic attentional selection using a gaze-contingent multiresolutional display. Journal of Experimental Psychology. Applied, 8, 99–117.PubMedCrossRefGoogle Scholar
  23. Loschky, L. C., Sethi, A., Simons, D. J., Pydimarri, T. N., Ochs, D., & Corbeille, J. L. (2007a). The importance of information localization in scene gist recognition. Journal of Experimental Psychology. Human Perception and Performance, 33, 1431–1450. doi: 10.1037/0096-1523.33.6.1431 PubMedCrossRefGoogle Scholar
  24. Loschky, L. C., & Wolverton, G. S. (2007). How late can you update gaze-contingent multiresolutional displays without detection? ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP), 3, 1–10. doi: 10.1145/1314303.1314310
  25. McConkie, G. W. (1981). Evaluating and reporting data quality in eye movement research. Behavior Research Methods & Instrumentation, 13, 97–106. doi: 10.1207/s1532799xssr0104_1 CrossRefGoogle Scholar
  26. McConkie, G. W. (1997). Eye movement contingent display control: Personal reflections and comments. Scientific Studies of Reading, 1, 303–316.CrossRefGoogle Scholar
  27. McConkie, G. W., & Loschky, L. C. (2002). Perception onset time during fixations in free viewing. Behavior Research Methods, 34, 481–490.CrossRefGoogle Scholar
  28. McConkie, G. W., Wolverton, G. S., & Zola, D. (1984). Instrumentation considerations in research involving eye-movement contingent stimulus control. Advances in Psychology, 22, 39–47. doi: 10.1016/S0166-4115(08)61816-6 CrossRefGoogle Scholar
  29. O’Sullivan, C., Dingliana, J., & Howlett, S. (2002). Eye movements and interactive graphics. In J. Hyönä, R. Radach, & H. Deubel (Eds.), The mind’s eye: Cognitive and applied aspects of eye movement research (pp. 555–572). Amsterdam, The Netherlands: Elsevier.Google Scholar
  30. Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124, 372–422. doi: 10.1037/0033-2909.124.3.372 PubMedCrossRefGoogle Scholar
  31. Reder, S. M. (1973). On-line monitoring of eye-position signals in contingent and noncontingent paradigms. Behavior Research Methods & Instrumentation, 5, 218–228. doi: 10.3758/bf03200168 CrossRefGoogle Scholar
  32. Reingold, E. M., Loschky, L. C., McConkie, G. W., & Stampe, D. M. (2003). Gaze-contingent multiresolutional displays: An integrative review. Human Factors, 45, 307–328. doi: 10.1518/hfes.45.2.307.27235 PubMedCrossRefGoogle Scholar
  33. Ross, J., Morrone, M. C., Goldberg, M. E., & Burr, D. C. (2001). Changes in visual perception at the time of saccades. Trends in Neurosciences, 24, 113–121.PubMedCrossRefGoogle Scholar
  34. Santini, F., Redner, G., Iovin, R., & Rucci, M. (2007). EyeRIS: A general-purpose system for eye-movement-contingent display control. Behavior Research Methods, 39, 350–364. doi: 10.3758/BF03193003 PubMedCrossRefGoogle Scholar
  35. Shah, A. (2012). VGA, DVI Display Interfaces to Bow out in Five Years. PC World. Retrieved from
  36. Shioiri, S. (1993). Postsaccadic processing of the retinal image during picture scanning. Perception & Psychophysics, 53, 305–314.CrossRefGoogle Scholar
  37. SR Research Ltd. (2013). Gaze contingent and gaze control paradigms [Web page]. Retrieved from
  38. Stampe, D. M. (1993). Heuristic filtering and reliable calibration methods for video-based pupil-tracking systems. Behavior Research Methods, Instruments, & Computers, 25, 137–142.CrossRefGoogle Scholar
  39. Triesch, J., Sullivan, B. T., Hayhoe, M. M., & Ballard, D. H. (2002). Saccade contingent updating in virtual reality. In Proceedings of the Eye Tracking Research and Applications Symposium 2002 (pp. 95–102). New York, NY: ACM. doi: 10.1145/507072.507092
  40. van Diepen, P. M. J., De Graef, P., & d’Ydewalle, G. (1995). Chronometry of foveal information extraction during scene perception. In Studies in visual information processing (Vol. 6, pp. 349–362). Amsterdam, The Netherlands: North-Holland. doi: 10.1016/S0926-907X(05)80030-3
  41. van Diepen, P. M. J., Ruelens, L., & d’Ydewalle, G. (1999). Brief foveal masking during scene perception. Acta Psychologica, 101, 91–103. doi: 10.1016/S0001-6918(98)00048-1 PubMedCrossRefGoogle Scholar
  42. Volkmann, F. C., Riggs, L. A., White, K. D., & Moore, R. K. (1978). Contrast sensitivity during saccadic eye movements. Vision Research, 18, 1193–1199. doi: 10.1016/0042-6989(78)90104-9 PubMedCrossRefGoogle Scholar
  43. Wang, P., & Nikolić, D. (2011). An LCD monitor with sufficiently precise timing for research in vision. Frontiers in Human Neuroscience, 5, 85. doi: 10.3389/fnhum.2011.00085 PubMedPubMedCentralGoogle Scholar
  44. Watson, T., & Krekelberg, B. (2011). An equivalent noise investigation of saccadic suppression. Journal of Neuroscience, 31, 6535–6541. doi: 10.1523/jneurosci.6255-10.2011 PubMedCrossRefPubMedCentralGoogle Scholar
  45. Wiens, S., Fransson, P., Dietrich, T., Lohmann, P., Ingvar, M., & Arne, Ö. (2004). Keeping it short: A comparison of methods for brief picture presentation. Psychological Science, 15, 282. doi: 10.1111/j.0956-7976.2004.00667.x PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  1. 1.Schepens Eye Research InstituteMassachusetts Eye and EarBostonUSA

Personalised recommendations